BENDING OF ORTHOTROPIC RECTANGULAR CANTILEVER PLATE
Abstract. An iterative method of superposition of correcting functions is proposed. The partial solution of the main differential bending equation is represented by a fourth-degree polynomial (the beam function), which gives a residual only with respect to the bending moment on parallel free faces. This discrepancy and the subsequent ones are mutually compensated by two types of correcting functions-hyperbolic-trigonometric series with indeterminate coefficients. Each function satisfies only a part of the boundary conditions. The solution of the problem is achieved by an infinite superposition of correcting functions. For the process to converge, all residuals must tend to zero. When the specified accuracy is reached, the process stops. Numerical results of the calculation of a square ribbed plate are presented.