Biegetragverhalten getränkter textiler Bewehrungselemente für Betonbauteile/Bending Bearing Behavior of impregnated textile reinforcement for concrete elements

Bauingenieur ◽  
2015 ◽  
Vol 90 (06) ◽  
pp. 248-251
Author(s):  
Sergej Rempel ◽  
Christian Kulas

Der Trend in der heutigen Bauwirtschaft zeigt einen wachsenden Bedarf an hochleistungsfähigen Materialien mit hohen Zug- und Druckfestigkeiten. Ein innovatives Baumaterial, das die Wünsche der Architekten und Tragwerksplaner befriedigt, ist der Textilbeton (Textile-Reinforced-Concrete (TRC)). Die Kombination aus hochfestem Beton und der korrosionsbeständigen Bewehrung, die gleichzeitig mit einer hohen Zugfestigkeit überzeugt, ermöglicht extrem schlanke Bauteile. Die bereits realisierten Textilbeton-Anwendungen bekräftigen die Anwendbarkeit des neuen Verbundwerkstoffes. Die weitere Entwicklung der textilen Bewehrung erweitert die Möglichkeiten für tragende Bauteile. Ein wichtiger Schritt war die Imprägnierung der Textilien mit Styrol-Butadien und Epoxidharz. Die Tränkung ermöglicht einen hohen Zuwachs der Zugfestigkeiten. Zusätzlich wird die Dauerhaftigkeit, Handhabung und Temperaturstabilität der Bewehrung erhöht. Folglich steigen die Effektivität und die Wirtschaftlichkeit der texilbewehrten Bauteile.   Der Beitrag stellt das Biegetragverhalten von Platten sowie Doppel-T Balken vor, die mit getränkten Textilien bewehrt wurden. Des Weiteren wird ein Bemessungsmodell für das Biegetragverhalten vorgestellt.

2019 ◽  
Vol 289 ◽  
pp. 04006
Author(s):  
Cynthia Morales Cruz ◽  
Michael Raupach

In the context of the application of carbon Textile Reinforced Concrete (TRC) layers for the durable repair of building surfaces, uniaxial tensile tests on rectangular TRC samples were carried out to compare the bond and load-bearing behavior of an epoxy-impregnated carbon textile and its surface modified version. The aim of the surface modification, consisting of a subsequent coating with epoxy resin and sanding with quartz sand, is the improvement of the composite material regarding crack width reduction and an increase of the load-bearing capacity. A total of 15 series were examined and the parameters: reinforcement type, orientation and ratio were varied. In addition, long-term load tests were conducted. An optical 3D-video measuring system in combination with a DIC-software was used, which allowed the analysis of the process of crack formation during the entire testing time. With the surface modified reinforcement the formation of approx. 1.5 times the number of cracks with averagely 33 % smaller crack widths and up to 50 % smaller crack spacings were observed, regardless of the ratio of reinforcement. The residual behaviour of the series subjected to a permanent load of 1500 MPa over 1000 h showed no reduction of the tensile stress compared to short-term tests.


2011 ◽  
Vol 466 ◽  
pp. 121-130 ◽  
Author(s):  
Josef Hegger ◽  
Christian Kulas ◽  
Michael Horstmann

In the last 30 years, façade-panels made of steel-reinforced concrete have become less attractive for architects and clients. Due to the metallic reinforcement, the insufficient concrete covers of former design code generations and hence the material-dependent corrosion, many cases of damage occurred. Using technical textiles for a new composite material, Textile Reinforced Concrete (TRC), it is possible to produce concrete structures which are not vulnerable to corrosion. The presented ventilated large-sized façade elements and self-supporting sandwich panels exemplify the capability of TRC. In the paper, applied materials are characterized and the production process of tailor-made textile reinforcements as well as the load-bearing behavior of the members is described.


2015 ◽  
Vol 719-720 ◽  
pp. 171-176 ◽  
Author(s):  
Kevin Pidun ◽  
Michael Schulze

By now the application of Textile Reinforced Concrete (TRC) for facade constructions can be considered as state of the art. Especially ventilated curtain walls made of TRC and sandwich elements made in combination of TRC-layers and foam cores recently are realized in pilot projects, which are predominantly located in Aachen, Germany. Textile reinforced concrete elements for architectural facade applications give new chances for architects and engineers design.


2014 ◽  
Vol 1054 ◽  
pp. 110-115 ◽  
Author(s):  
Lenka Laiblová ◽  
Tomáš Vlach ◽  
Alexandru Chira ◽  
Magdaléna Novotná ◽  
Ctislav Fiala ◽  
...  

In civil engineering, steel reinforced concrete is currently still the most widely used composite material. For broad spectrum of utilization is the most important combination of a high compressive and tensile strength [1]. The increasing demand for subtle concrete elements gave impetus to the development of the new materials for the reinforcement of concrete which are non-corrodible and thus do not need such a thick coating layer-technical textiles. These composite materials are known under the title Textile Reinforced Concrete – TRC. The current research reported the use of AR glass fibers reinforced material for HPC and comparison with other reinforced materials.


2018 ◽  
Vol 195 ◽  
pp. 01016
Author(s):  
Stefanus Kristiawan ◽  
Bambang Santosa ◽  
Edy Purwanto ◽  
Rachmad A. Caesar

Strengthening of reinforced concrete elements can be carried out using a variety of materials and techniques. One of such materials is textile reinforced concrete (TRC). This material consists of a matrix, usually made of mortar, and textile as reinforcement. This study aims to produce mortar that meets the characteristic of a TRC matrix with respect to an adequate bond strength. The type of mortar developed in this study was fibre reinforced polyvinyl acetate (PVA) modified mortar. The bond strength of this material to the parent concrete was tested by the slant shear method. The results indicate that the amount of PVA content affects the magnitude of the bond strength. The higher the PVA content, the higher the bond strength. The results also confirm that the relationship between the bond strengths and their corresponding compressive strengths tends to be linear.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1383-1400 ◽  
Author(s):  
Yiska Goldfeld ◽  
Gali Perry

The study examines the use of hybrid carbon-based textile-reinforced concrete elements with self-sensing capabilities to quantitatively detect wetting events within cracked zones. The self-sensory structural element combines the advantages of AR-glass and carbon-based textile-reinforced concrete for thin-walled structural elements with those stemming from the electrical properties of reinforced carbon rovings. The article investigates the sensitivity of sensory carbon rovings to distinguish between the magnitudes of various wetting events, which is associated with the severity of the cracking, according to two electrical setups (DC and AC circuits). The sensing concept takes advantage of the continuous configuration of the carbon rovings, which enables direct connection of the roving ends to the data acquisition system, and of the manufacturing process that two carbon rovings are placed adjacent to one another. Therefore, it is assumed that wetting events electrically short-circuit the two adjacent rovings. The sensitivity of the two electrical setups is experimentally investigated and performed on a couple of bared carbon rovings and on a cracked textile-reinforced concrete beam. Test results demonstrate the sensitivity of the sensing capabilities of the carbon rovings to detect and distinguish between the magnitudes of the wetting events and consequently the severity of the cracking.


Bauingenieur ◽  
2017 ◽  
Vol 92 (06) ◽  
pp. 280-288 ◽  
Author(s):  
Sergej Rempel ◽  
Marcus Ricker

Für die Bemessung von textilbewehrten Bauteilen sind Materialkennwerte für die Bewehrung erforderlich. Die bisherigen Untersuchungen erfolgten nicht einheitlich und waren sehr aufwendig. Aus diesem Grund wurde ein standardisierter Faserstrangzugversuch entwickelt, mit dem alle erforderlichen Materialkennwerte ermittelt werden können. Hierbei sind lediglich Versuche an einem 160 mm langen Faserstrang notwendig, der aus der textilen Bewehrungsmatte herausgeschnitten wird. Ein Faserstrang besteht aus zusammengesetzten Rovings. Die Ergebnisse zeigen, dass die textile Bewehrung sich linear-elastisch verhält und die Werte der Bruchspannung näherungsweise normalverteilt sind. Diese Erkenntnisse werden genutzt, um die Bemessungsspannung und Bemessungsdehnung zu ermitteln sowie um den Teilsicherheitsbeiwert für die textile Bewehrung über eine Zuverlässigkeitsberechnung zu bestimmen.


Sign in / Sign up

Export Citation Format

Share Document