Designed Textile Reinforced Concrete Elements for Architectural Facade Applications

2015 ◽  
Vol 719-720 ◽  
pp. 171-176 ◽  
Author(s):  
Kevin Pidun ◽  
Michael Schulze

By now the application of Textile Reinforced Concrete (TRC) for facade constructions can be considered as state of the art. Especially ventilated curtain walls made of TRC and sandwich elements made in combination of TRC-layers and foam cores recently are realized in pilot projects, which are predominantly located in Aachen, Germany. Textile reinforced concrete elements for architectural facade applications give new chances for architects and engineers design.

2013 ◽  
Vol 747 ◽  
pp. 415-419
Author(s):  
Kevin Pidun ◽  
Thomas Gries

By now the application of Textile Reinforced Concrete (TRC) for facade constructions can be considered as state of the art. Especially ventilated curtain walls made of TRC and sandwich elements made in combination of TRC-layers and foam cores recently are realized in pilot projects which are predominantly located in Aachen, Germany. The Life funded Insu-Shell façade of the Institute fuer Textiltechnik (ITA) of RWTH Aachen University gives an example of such a pilot project. Furthermore, a pedestrian bridge has been built in Albstadt, Germany. The enormous potential of TRC-applications is shown in these practical projects. All projects have been completed successfully and present good results in terms of the surface quality, the design freedom, the wall thinness and the ecological performance. A networked process chain was aimed at and approached and finally implemented. Apart from this, all these projects incorporating impregnated textile reinforcements reveal unanswered questions regarding production of shaped reinforcement elements, their ability to bear loads and their durability. Particularly the transformation of a 2D-warp-knit fabric to a reinforcement element (textile reinforcement cage) is a challenge, which needs to be addressed further. Since the beginning of 2012 a new transfer project called Shaped textile reinforcement elements for concrete components (T08) within the framework of the Collaborative Research Center 532 `Textile Reinforced Concrete - Development of a new technology` is funded. That challenge is to be solved in the T08 project in cooperation with Institutes from the RWTH Aachen University and industry partners led by the Institute of Structural Concrete of RWTH Aachen University.


Bauingenieur ◽  
2015 ◽  
Vol 90 (06) ◽  
pp. 248-251
Author(s):  
Sergej Rempel ◽  
Christian Kulas

Der Trend in der heutigen Bauwirtschaft zeigt einen wachsenden Bedarf an hochleistungsfähigen Materialien mit hohen Zug- und Druckfestigkeiten. Ein innovatives Baumaterial, das die Wünsche der Architekten und Tragwerksplaner befriedigt, ist der Textilbeton (Textile-Reinforced-Concrete (TRC)). Die Kombination aus hochfestem Beton und der korrosionsbeständigen Bewehrung, die gleichzeitig mit einer hohen Zugfestigkeit überzeugt, ermöglicht extrem schlanke Bauteile. Die bereits realisierten Textilbeton-Anwendungen bekräftigen die Anwendbarkeit des neuen Verbundwerkstoffes. Die weitere Entwicklung der textilen Bewehrung erweitert die Möglichkeiten für tragende Bauteile. Ein wichtiger Schritt war die Imprägnierung der Textilien mit Styrol-Butadien und Epoxidharz. Die Tränkung ermöglicht einen hohen Zuwachs der Zugfestigkeiten. Zusätzlich wird die Dauerhaftigkeit, Handhabung und Temperaturstabilität der Bewehrung erhöht. Folglich steigen die Effektivität und die Wirtschaftlichkeit der texilbewehrten Bauteile.   Der Beitrag stellt das Biegetragverhalten von Platten sowie Doppel-T Balken vor, die mit getränkten Textilien bewehrt wurden. Des Weiteren wird ein Bemessungsmodell für das Biegetragverhalten vorgestellt.


2021 ◽  
Vol 5 (11) ◽  
pp. 290
Author(s):  
Panagiotis Kapsalis ◽  
Tine Tysmans ◽  
Danny Van Hemelrijck ◽  
Thanasis Triantafillou

Textile-reinforced concrete (TRC) is a promising composite material with enormous potential in structural applications because it offers the possibility to construct slender, lightweight, and robust elements. However, despite the good heat resistance of the inorganic matrices and the well-established knowledge on the high-temperature performance of the commonly used fibrous reinforcements, their application in TRC elements with very small thicknesses makes their effectiveness against thermal loads questionable. This paper presents a state-of-the-art review on the thermomechanical behavior of TRC, focusing on its mechanical performance both during and after exposure to high temperatures. The available knowledge from experimental investigations where TRC has been tested in thermomechanical conditions as a standalone material is compiled, and the results are compared. This comparative study identifies the key parameters that determine the mechanical response of TRC to increased temperatures, being the surface treatment of the textiles and the combination of thermal and mechanical loads. It is concluded that the uncoated carbon fibers are the most promising solution for a fire-safe TRC application. However, the knowledge gaps are still large, mainly due to the inconsistency of the testing methods and the stochastic behavior of phenomena related to heat treatment (such as spalling).


2021 ◽  
Vol 72 (1) ◽  
pp. 127-142
Author(s):  
Tien Tran Manh ◽  
Tu Do Ngoc ◽  
Hong Vu Xuan

Over the past two decades, textile-reinforced concrete (TRC) materials have been increasingly and widely used for the strengthening/reinforcement of civil engineering works. Thanks to their many advantages as the durability, considerable bond strength with the reinforced concrete (RC) members, best recycling conditions, the TRC materials are considered as an optimal alternative solution to substitute the traditional strengthening and reinforcing materials FRP (Fiber-Reinforced Polymer). The mechanical behavior of TRC composite has been characterized in previous experimental studies. This paper presents a state-of-the-art review of the mechanical behavior of TRC composite under tensile loading. By inheriting from previous review studies, this paper updates the experimental studies on the tensile behavior of TRC composite in the last decade. The review addresses, firstly the mechanical properties of constituent materials in TRC as reinforcement textile, cementitious matrix, and textile/matrix interface. Secondly, it addresses the tensile behavior of TRC composite, including the characterization methods as well as analyses of its strain-hardening behavior with different phases. The paper then discusses the main factors which influence the mechanical behavior of TRC materials in the available experimental studies. Finally, the conclusion of this review terminates this paper.


2014 ◽  
Vol 1054 ◽  
pp. 110-115 ◽  
Author(s):  
Lenka Laiblová ◽  
Tomáš Vlach ◽  
Alexandru Chira ◽  
Magdaléna Novotná ◽  
Ctislav Fiala ◽  
...  

In civil engineering, steel reinforced concrete is currently still the most widely used composite material. For broad spectrum of utilization is the most important combination of a high compressive and tensile strength [1]. The increasing demand for subtle concrete elements gave impetus to the development of the new materials for the reinforcement of concrete which are non-corrodible and thus do not need such a thick coating layer-technical textiles. These composite materials are known under the title Textile Reinforced Concrete – TRC. The current research reported the use of AR glass fibers reinforced material for HPC and comparison with other reinforced materials.


2018 ◽  
Vol 195 ◽  
pp. 01016
Author(s):  
Stefanus Kristiawan ◽  
Bambang Santosa ◽  
Edy Purwanto ◽  
Rachmad A. Caesar

Strengthening of reinforced concrete elements can be carried out using a variety of materials and techniques. One of such materials is textile reinforced concrete (TRC). This material consists of a matrix, usually made of mortar, and textile as reinforcement. This study aims to produce mortar that meets the characteristic of a TRC matrix with respect to an adequate bond strength. The type of mortar developed in this study was fibre reinforced polyvinyl acetate (PVA) modified mortar. The bond strength of this material to the parent concrete was tested by the slant shear method. The results indicate that the amount of PVA content affects the magnitude of the bond strength. The higher the PVA content, the higher the bond strength. The results also confirm that the relationship between the bond strengths and their corresponding compressive strengths tends to be linear.


2018 ◽  
Vol 18 (5-6) ◽  
pp. 1383-1400 ◽  
Author(s):  
Yiska Goldfeld ◽  
Gali Perry

The study examines the use of hybrid carbon-based textile-reinforced concrete elements with self-sensing capabilities to quantitatively detect wetting events within cracked zones. The self-sensory structural element combines the advantages of AR-glass and carbon-based textile-reinforced concrete for thin-walled structural elements with those stemming from the electrical properties of reinforced carbon rovings. The article investigates the sensitivity of sensory carbon rovings to distinguish between the magnitudes of various wetting events, which is associated with the severity of the cracking, according to two electrical setups (DC and AC circuits). The sensing concept takes advantage of the continuous configuration of the carbon rovings, which enables direct connection of the roving ends to the data acquisition system, and of the manufacturing process that two carbon rovings are placed adjacent to one another. Therefore, it is assumed that wetting events electrically short-circuit the two adjacent rovings. The sensitivity of the two electrical setups is experimentally investigated and performed on a couple of bared carbon rovings and on a cracked textile-reinforced concrete beam. Test results demonstrate the sensitivity of the sensing capabilities of the carbon rovings to detect and distinguish between the magnitudes of the wetting events and consequently the severity of the cracking.


Sign in / Sign up

Export Citation Format

Share Document