Modellunterstützte Baubarkeitsprüfung in der Montageplanung*/Model-Assisted mountability check of engines in assembly planning

2017 ◽  
Vol 107 (04) ◽  
pp. 253-260
Author(s):  
R. Prof. Müller ◽  
J. Eilers ◽  
L. Hermanns ◽  
R. Gerdes

Die Montageplanung muss trotz kurzer Planungszyklen in der frühen Produktentwicklung die Effekte neuer Bauteilvarianten auf Montagesysteme im Detail bewerten. Um den Aufwand bei der Pflege der Variantendaten zu reduzieren, wird eine Logik entwickelt, mit der sich die Baubarkeit der Bauteilvarianz an einzelnen Montagestationen effizient auswerten lässt. Zudem wird ein Vorgehen zum teilautomatischen Abgleich geometrischer Bauteil-Ausprägungen aus CAD-Modellen mit Montagerestriktionen vorgestellt.   In spite of short planning cycles, assembly planning must do in-depth evaluations of effects of new component variants on assembly systems in early stages of product development. To reduce the effort of data management, a logic is developed to efficiently analyse the mountability of the part variance on specific assembly stations. Moreover, a method for the partly automated comparison of geometric characteristics of components out of CAD models with assembly restrictions is presented.

2019 ◽  
Vol 109 (09) ◽  
pp. 622-627
Author(s):  
P. Burggräf ◽  
M. Dannapfel ◽  
T. Adlon ◽  
A. Riegauf ◽  
K. Müller ◽  
...  

Produzierende Unternehmen intensivieren aufgrund zunehmend volatiler Kundenbedürfnisse die Anwendung agiler Produktentwicklungsansätze. Ziel des Beitrags ist die Einführung eines Konzepts zur Befähigung dieser dynamischen Produktentwicklung in der Montage. Der integrative Lösungsansatz basiert auf der wirtschaftlichen Optimierung des Agilitätsgrades von Montagesystemen sowie dem selektiven Einsatz agiler Methoden in der traditionell plangetriebenen Montageplanung als Teil der Fabrikplanung.   To meet more volatile customer needs, manufacturing companies increasingly make use of agile product development approaches. This article aims to introduce a concept to enable for dynamic product development in assembly. This integrative solution approach is based on the economic optimization of the degree of agility of assembly systems and on the selective use of agile methods in traditional, plan-driven assembly planning as part of factory planning.


2021 ◽  
Vol 1 ◽  
pp. 3159-3168
Author(s):  
Sohail Ahmed Soomro ◽  
Yazan A M Barhoush ◽  
Zhengya Gong ◽  
Panos Kostakos ◽  
Georgi V. Georgiev

AbstractPrototyping is an essential activity in the early stages of product development. This activity can provide insight into the learning process that takes place during the implementation of an idea. It can also help to improve the design of a product. This information and the process are useful in design education as they can be used to enhance students' ability to prototype their ideas and develop creative solutions. To observe the activity of prototype development, we conducted a study on students participating in a 7-week course: Principles of Digital Fabrication. During the course, eight teams made prototypes and shared their weekly developments via internet blog posts. The posts contained prototype pictures, descriptions of their ideas, and reflections on activities. The blog documentation of the prototypes developed by the students was done without the researchers' intervention, providing essential data or research. Based on a review of other methods of capturing the prototype development process, we compare existing documentation tools with the method used in the case study and outline the practices and tools related to the effective documentation of prototyping activity.


2021 ◽  
Vol 1 ◽  
pp. 2047-2056
Author(s):  
Michael P. Voigt ◽  
Dominik Klaiber ◽  
Patrick Hommel ◽  
Daniel Roth ◽  
Hansgeorg Binz ◽  
...  

AbstractThe approach of functional integration has the potential to solve challenges regarding lightweight design and resource efficiency since the number of parts and therefore the weight and needed installation space can be reduced. One important step in developing integrative concepts is the pre-selection of suitable functions or components. Previous methods of pre-selection take various aspects into account. However, pre-selection based on these methods usually requires additional tables and forms, whose preparation and editing quickly becomes time-consuming. At the same time, most of the development engineers are working on CAD models. However, their use in the selection of suitable integration partners is not yet supported sufficiently. The development of more than 80 concepts on five different vehicles has shown that the consideration of geometric properties (position, orientation, size) is effective, as they can be identified with minimal analysis effort while working on CAD. In this paper a four-step procedure is presented how integration partners can be identified directly on the basis of CAD models. A following evaluation with development engineers in practice completes the research.


2018 ◽  
Vol 108 (09) ◽  
pp. 606-610
Author(s):  
R. Müller ◽  
O. Mailahn ◽  
R. Peifer

Die Planung von Montagesystemen wird durch die Einführung von cyber-physischen Modulen und neuen Formen der Zusammenarbeit von Mensch und Roboter zunehmend komplexer. Ontologien können Planungswissen bezüglich Beziehungen und Restriktionen formal abbilden. Mit der hier beschriebenen Sprachdomäne werden Ontologien für Montageplaner zugänglich und anwendbar. Die Planung kann auf diese Weise beschleunigt und flexibilisiert werden.   The planning of assembly systems is becoming increasingly complex with the introduction of cyber-physical modules and new forms of human-robot cooperation. Ontologies can formally capture planning knowledge in terms of relationships and restrictions. The domain specific language described here makes ontologies accessible and usable for assembly planners. Thus, planning may be accelerated and designed more flexibly.


2021 ◽  
pp. 28-44
Author(s):  
D. Proskurenko ◽  
◽  
O. Tretyak ◽  
M. Demchenko ◽  
M. Filippova ◽  
...  

Modern industrial production requires the improvement of assembly processes, and thus increase the level of automated intelligent sequence planning. Therefore, researches in the field of automation of the sequence of assembly of products in industries are relevant at this time. In today's world there is a need to develop complex, accurate products. Problems are created in industries due to the reduction of the life cycle of products. There is a need to study the problem of assembly planning to achieve the goal of practical implementation and standardization of assembly plans. Creating graphs of the addition process is one of the problems. The assembly planning system can reduce human intervention in the process and reduce computational effort. The finished assembly contains many components that can be assembled using many sequences. A review of the methods from the literature showed that although these methods increase the automation level, they still cannot be applied to actual production because they do not take into account the experience and knowledge that can play a major role in planning and are of great value. Assembly planning, relationship charts, priority charts. Improving the assembly planning system to create a communication schedule and an assembly priority schedule was proposed. The advanced system will be used to generate possible assembly sequences with subassembly identification. A system has been developed to create alternative possible assembly sequences that can be used by component part / product designers in the early stages. A system capable of generating assembly sequences for simultaneous assembly of multiple parts has been proposed. Conclusions and work results can be applied used and improved for more productive product development by designers in the early stages and faster assembly of products in enterprises. The paper did not consider practical limitations (gravity) and irreversible assembly operations, such as permanent fastening, welding etc. Кey words: assembly, blocking graph, relation graph, sequence


Author(s):  
Benjamin Röhm ◽  
Reiner Anderl

Abstract The Department of Computer Integrated Design (DiK) at the TU Darmstadt deals with the Digital Twin topic from the perspective of virtual product development. A concept for the architecture of a Digital Twin was developed, which allows the administration of simulation input and output data. The concept was built under consideration of classical CAE process chains in product development. The central part of the concept is the management of simulation input and output data in a simulation data management system in the Digital Twin (SDM-DT). The SDM-DT takes over the connection between Digital Shadow and Digital Master for simulation data and simulation models. The concept is prototypically implemented. For this purpose, real product condition data were collected via a sensor network and transmitted to the Digital Shadow. The condition data were prepared and sent as a simulation input deck to the SDM-DT in the Digital Twin based on the product development results. Before the simulation data and models are simulated, there is a comparison between simulation input data with historical input data from product development. The developed and implemented concept goes beyond existing approaches and deals with a central simulation data management in Digital Twins.


Author(s):  
Patrik Boart ◽  
Ola Isaksson

Currently, mechanical design of aero engine structural components is defined by dimensioning of Design Parameters (DP's) to meet Functional Requirements (FR's). FR's are typically loads, geometrical interfaces and other boundary conditions. Parameters from downstream processes are seldom actually seen as DP's. This paper proposes that downstream process parameters are treated as DP's which calls for engineering methods that can define and evaluate these extended set of DP's. Using the proposed approach manufacturing process alternatives can be used as DP's in early stages of product development. Both the capability to quantitatively assess impact of varying manufacturing DP's, and the availability of these design methods are needed to succeed as an early phase design method. One bottleneck is the preparation time to define and generate these advanced simulation models. This paper presents how these manufacturing process simulations can be made available by automating the weld simulation preparation stages of the engineering work. The approach is based on a modular approach where the methods are defined with knowledge based engineering techniques-operating close to the CAD system. Each method can be reused and used independently of each other and adopted to new geometries. A key advantage is the extended applicability to new products, which comes with a new set of DP's. On a local level the lead time to generate such manufacturing simulation models is reduced with more than 99% allowing manufacturing process alternatives to be used as DP's in early stages of product development.


Sign in / Sign up

Export Citation Format

Share Document