scholarly journals Palaeodirectional and palaeointensity results of Paleocene and Eocene basalts from West Greenland

1999 ◽  
Vol 46 ◽  
pp. 69-78
Author(s):  
Janna Riisager ◽  
Mireille Perrin

Twelve sites (57 drill cores) from two lava series and one dike were sampled for a palaeomagnetic study of the late Paleocene and early Eocene West Greenland flood basalts. Most of the rocks exhibited well-defined one component remanent magnetization with high unblocking temperatures (mostly above 500°C) and high median destructive fields (30–40 mT). All the rocks are reversely magnetized and, when combined with 40Ar/39Ar ages (Storey et al. 1998), a direct correlation with the geomagnetic polarity time scale can be made. Rock magnetic experiments indicate varying degree of both high temperature (deuteric) and low temperature (hydrothermal) oxidation of primary titanomagnetite. Twenty-three samples with high Curie point (~570°C) were chosen for Thellier palaeointensity experiments. Eleven of them, coming from three different cooling units, yielded reliable palaeointensity estimates. The results are reasonably coherent within sites, and the site-mean virtual dipole moments (VDM) are 1.8, 9.0 and 15.4×1022Am2 . The lowest VDM most probably corresponds to the ~94 ka long C24n.1r subchron, while the two other VDM’s close to present-day and higher than present-day values correspond to chrons C26r and C24r respectively.

2018 ◽  
Vol 4 (9) ◽  
pp. eaat8223 ◽  
Author(s):  
Jennifer Kasbohm ◽  
Blair Schoene

Flood basalts, the largest volcanic events in Earth history, are thought to drive global environmental change because they can emit large volumes of CO2and SO2over short geologic time scales. Eruption of the Columbia River Basalt Group (CRBG) has been linked to elevated atmospheric CO2and global warming during the mid-Miocene climate optimum (MMCO) ~16 million years (Ma) ago. However, a causative relationship between volcanism and warming remains speculative, as the timing and tempo of CRBG eruptions is not well known. We use U-Pb geochronology on zircon-bearing volcanic ash beds intercalated within the basalt stratigraphy to build a high-resolution CRBG eruption record. Our data set shows that more than 95% of the CRBG erupted between 16.7 and 15.9 Ma, twice as fast as previous estimates. By suggesting a recalibration of the geomagnetic polarity time scale, these data indicate that the onset of flood volcanism is nearly contemporaneous with that of the MMCO.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Elisabeth Schnepp ◽  
Patrick Arneitz ◽  
Morgan Ganerød ◽  
Robert Scholger ◽  
Ingomar Fritz ◽  
...  

AbstractPliocene volcanic rocks from south-east Austria were paleomagnetically investigated. Samples were taken from 28 sites located on eight different volcanoes. Rock magnetic investigations revealed that magnetic carriers are Ti-rich or Ti-poor titanomagnetites with mainly pseudo-single-domain characteristics. Characteristic remanent magnetization directions were obtained from alternating field as well as from thermal demagnetization. Four localities give reversed directions agreeing with the expected direction from secular variation. Another four localities of the Klöch–Königsberg volcanic complex (3) and the Neuhaus volcano (1) have reversed directions with shallow inclinations and declinations of about 240° while the locality Steinberg yields a positive inclination of about 30° and 200° declination. These aberrant directions cannot be explained by local or regional tectonic movements. All virtual geomagnetic pole positions are located on the southern hemisphere. Four virtual geomagnetic poles lie close to the geographic pole, while all others are concentrated in a narrow longitude sector offshore South America (310°–355°) with low virtual geomagnetic pole latitudes ranging from − 15° to − 70°. The hypothesis that a transitional geomagnetic field configuration was recorded during the short volcanic activity of these five localities is supported by 9 paleointensity results and 39Ar/40Ar dating. Virtual geomagnetic dipole moments range from 1.1 to 2.9·1022 Am2 for sites with low VGP latitudes below about 60° and from 3.0 to 9.3·1022 Am2 for sites with higher virtual geomagnetic pole latitudes. The new 39Ar/40Ar ages of 2.51 ± 0.27 Ma for Klöch and 2.39 ± 0.03 Ma for Steinberg allow for the correlation of the Styrian transitional directions with cryptochron C2r.2r-1 of the geomagnetic polarity time scale. Graphic abstract


2006 ◽  
Vol 9 ◽  
pp. 51-65 ◽  
Author(s):  
Niels Abrahamsen

The palaeomagnetic dating and evolution of the Faroe Islands are discussed in the context of new density and rock magnetic results from the deepened Lopra-1/1A well. The reversal chronology of the c. 6½ km thick basalt succession is also described. The polarity record of the Faroe Islands may now be correlated in detail with the Geomagnetic Polarity Time Scale. The lowermost (hidden) part of the lower basalt formation correlates with Chron C26r (Selandian age), the top (exposed) part of the lower basalt formation correlates with Chrons C26n, C25r and C25n (Selandian and Thanetian age) and the middle and upper basalt formations correlate with Chron C24n.3r (Ypresian). Inclinations indicate a far-sided position of the palaeomagnetic poles, which is characteristic of results from most Palaeogene volcanics from the northern North Atlantic region. The density, magnetic susceptibility and magnetic remanence of 20 specimens from one solid core (1½ m in length) and 26 sidewall cores from the well between –2219 and –3531 m below sea level (b.s.l.) suggest that the volcanic materials can be divided into two characteristic groups: solid unaltered basalts and altered basalts and tuffs. The magnetic properties are typically log-normally distributed and the carriers of remanence are Ti-poor Ti-magnetites with Curie temperatures close to 580°C. The inclination of the 1½ m core at 2380 m b.s.l. is dominantly negative (two plugs at the very top of the core do show normal polarity, but they are likely to be misoriented as all specimens appear to be from one flow). Magnetic logging (magnetic susceptibility and field intensity) down to 3515 m b.s.l. was made in Lopra-1/1A together with other geophysical logs but did not yield conclusive inclination data.


2011 ◽  
Vol 48 (8) ◽  
pp. 1282-1291 ◽  
Author(s):  
M.H.L. Deenen ◽  
W. Krijgsman ◽  
M. Ruhl

The Partridge Island stratigraphic section at the Bay of Fundy, Maritime Canada, reveals a continental sedimentary succession with the end-Triassic mass extinction level closely followed by basalts of the Central Atlantic Magmatic Province (CAMP). New Paleomagnetic data show that a short reverse magnetic polarity chron, correlative to E23r of the Newark Geomagnetic Polarity Time Scale (GPTS), is present below the extinction event. Organic carbon isotope data and basalt geochemistry further indicate that the onset of CAMP emplacement in the Bay of Fundy was roughly synchronous with emplacement in the Newark basin, but slightly postdates the oldest CAMP volcanism in Morocco by ∼20 ka. These results confirm the potential for long-distance CAMP correlations based on geochemical trace elements, indicate substantiate provincialism of latest Triassic palynoflora, and suggest a very concise period (<<100 ka) of CAMP emplacement in the northern Atlantic region.


2021 ◽  
Author(s):  
Annique van der Boon ◽  
Andy Biggin ◽  
Daniele Thallner ◽  
Mark Hounslow ◽  
Jerzy Nawrocki ◽  
...  

&lt;p&gt;The Devonian has long been a problematic era for paleomagnetism. Devonian data are generally difficult to interpret and have complex partial or full overprints. These problems arise from paleomagnetic data obtained from both sedimentary and igneous rocks. As a result, the reconstruction of motions of tectonic plates is often troubling, as these rely on apparent polar wander paths constructed from Devonian paleomagnetic poles. Also the geomagnetic polarity time scale for this time period is poorly constrained. Paleointensity studies suggest that the field was much weaker than the field of today, and it has been hypothesised that this was accompanied by many polarity reversals (a hyperreversing field). We review studies on Devonian paleopoles, magnetostratigraphy and paleointensity. We tentatively suggest that the field during the Devonian might have been so weak and perhaps of a non-dipolar configuration, that obtaining reliable paleomagnetic data from Devonian rocks is extremely difficult. &amp;#160;In order to push forward the understanding of the Devonian field, we emphasise the need for studies to provide fully accessible data down to specimen level demagnetisation diagrams. Incorporating all data, no matter how complex or bad they might seem, is the only way to advance the understanding of the Devonian magnetic field. Recent paleointensity studies appear to suggest that the Devonian and Ediacaran were both extreme weak field intervals. For the Ediacaran, it has been hypothesised that the field had an impact on life on earth. A fundamentally weak and perhaps non-dipolar field during the Devonian might have had an influence on evolution and extinctions. As there is a large number of biological crises in the Devonian, we here pose the question whether the Earth&amp;#8217;s magnetic field was a contributing factor to these crises. New independent evidence from the Devonian-Carboniferous boundary suggests that the Hangenberg event was caused by increased UV-B radiation, which is in line with a weak magnetic field.&lt;/p&gt;


2021 ◽  
Author(s):  
Annique van der Boon ◽  
Andy Biggin ◽  
Daniele Thallner ◽  
Mark Hounslow ◽  
Jerzy Nawrocki ◽  
...  

&lt;p&gt;The global polarity time scale (GPTS) is relatively unconstrained for the Paleozoic, particularly the Devonian. Constraining the GPTS and reversal frequency for the Devonian is crucial for the understanding of the behaviour of Earth&amp;#8217;s magnetic field. Furthermore, construction of a GPTS for the Paleozoic could provide a valuable tool for age determination in other studies. However, most paleomagnetic data from the Devonian is problematic. The data are difficult to interpret and don&amp;#8217;t have a single easy to resolve (partial or full) overprint. Paleointensity studies suggest that the field was much weaker than the field of today, which could have been accompanied by many reversals (a hyperreversing field). In order to improve the geomagnetic polarity time scale in the Devonian, and quantify the number of reversals in this time, we sampled three Devonian sections in Germany, Poland and Canada. These sections show evidence that the rocks were not significantly heated, and they show little evidence for remineralisation. This minimises the chance the rocks were remagnetised after the Devonian. Our data show that even when rocks are well qualified to have reliably recorded the Devonian field, the interpretation is not straightforward. We also discuss problems with the Devonian GPTS as presented in the geologic timescale.&lt;/p&gt;


2019 ◽  
Vol 34 (3) ◽  
pp. 216-226 ◽  
Author(s):  
W. Wong-Ng ◽  
H. G. Nguyen ◽  
L. Espinal ◽  
D. W. Siderius ◽  
J. A. Kaduk

Powder X-ray diffraction patterns for three forms of MIL-53(Al), a metal organic framework (MOF) compound with breathing characteristics, were investigated using the Rietveld refinement method. These three samples are referred to as the MIL-53(Al)as-syn (the as synthesized sample), orthorhombic, Pnma, a = 17.064(2) Å, b = 6.6069(9) Å, c = 12.1636(13) Å, V = 1371.3(2) Å3, Z = 4), MIL-53(Al)LT-H (low-temperature hydrated phase, monoclinic P21/c, a = 19.4993(8) Å, b = 15.2347(6) Å, c = 6.5687(3) Å, β = 104.219(4) °, V = 1891.55(10) Å3, Z = 8), and MIL-53(Al)HT-D (high-temperature dehydrated phase, Imma, a = 6.6324(5) Å, b = 16.736(2) Å, c = 12.840(2), V = 1425.2(2) Å3, Z = 4). The crystal structures of the “as-syn” sample and the HT-D sample are confirmed to be the commonly adopted ones. However, the structure of the MIL-53(Al)LT-H phase is confirmed to be monoclinic with a space group of P21/c instead of the commonly accepted space group Cc, resulting in a cell volume double in size. The structure has two slightly different types of channel. The pore volumes and pore surface area were estimated to be 0.11766 (8) cm3/g and 1461.3(10) m2/g for MIL-53(Al)HT-D (high-temperature dehydrated phase), and 0.08628 (5) cm3/g and 1401.6 (10) m2/g for MIL-53(Al)as-syn phases, respectively. The powder patterns for the MIL-53(Al)as-syn and MIL-53(Al)HT-D phases are reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document