scholarly journals Carbon dioxide utilization and circular economy: The world, Russia and the Arctic

Author(s):  
Ekaterina A. Kuznetsova ◽  
◽  
Alina A. Cherepovitsyna ◽  

Sustainable development of regions, territories, and industrial complexes is becoming increasingly important in the context of global environmental challenges. The practical realization of the sustainability challenges depends more on the implementation of specific technologies, including greenhouse emission mitigation technologies. Today, the development and scaling out of CC(U)S (carbon capture, utilization and storage) technologies seems to be one of the most realistic ways to reduce CO2 emissions. The role of CO2 is changing in the context of circular economy principles, it is no longer considered as industrial waste, but as a valuable resource. The aim of this paper is to analyze and assess the prospects for carbon dioxide utilization, as well as the cost-effectiveness of CC(U)S initiatives (using the example of a CO2-based methanol production project in Iceland) in order to explore the prerequisites and opportunities for the development of such projects in the Arctic. In order to assess the spread of technology worldwide, an analysis of foreign experience in implementing such initiatives is presented, as well as the main promising ways of carbon dioxide utilization and their key features are identified. The economic efficiency of the CO2-based methanol production project (by the example of a commercial project in Iceland) is substantiated. A general vision of the prerequisites and opportunities for the implementation of CC(U)S initiatives in the Arctic regions is presented.

2020 ◽  
Vol 2 (4) ◽  
pp. 492-512
Author(s):  
Simon P. Philbin

Carbon capture and utilization (CCU) is the process of capturing unwanted carbon dioxide (CO2) and utilizing for further use. CCU offers significant potential as part of a sustainable circular economy solution to help mitigate the impact of climate change resulting from the burning of hydrocarbons and alongside adoption of other renewable energy technologies. However, implementation of CCU technologies faces a number of challenges, including identifying optimal pathways, technology maturity, economic viability, environmental considerations as well as regulatory and public perception issues. Consequently, this research study provides a critical analysis and evaluation of the technology pathways for CCU in order to explore the potential from a circular economy perspective of this emerging area of clean technology. This includes a bibliographic study on CCU, evaluation of carbon utilization processes, trend estimation of CO2 usage as well as evaluation of methane and methanol production. A value chain analysis is provided to support the development of CCU technologies. The research study aims to inform policy-makers engaged in developing strategies to mitigate climate change through reduced carbon dioxide emission levels and improve our understanding of the circular economy considerations of CCU in regard to production of alternative products. The study will also be of use to researchers concerned with pursuing empirical investigations of this important area of sustainability.


2021 ◽  
Vol 9 ◽  
Author(s):  
Elizabeth J. Abraham ◽  
Farah Ramadan ◽  
Dhabia M. Al-Mohannadi

Growing climate change concerns in recent years have led to an increased need for carbon dioxide emission reduction. This can be achieved by implementing the concept of circular economy, which promotes the practice of resource conservation, emission minimization, and the maintenance of sustainable revenue streams. A considerable amount of carbon dioxide emissions is a consequence of stationary sources from industrial processes. These emissions can be reduced using carbon capture utilization and storage (CCUS) or reduced at source by using emission free renewable resources. The method developed within this work uses mixed integer linear programming (MILP) to design sustainable clusters that convert seawater (including waste brine), air, and waste carbon dioxide emissions to value-added products with sunlight as the main energy source. In this way, circular economy is employed to minimize fresh resource consumption and maximize material reuse. The potential of this work is demonstrated through a case study, which shows that an industrial park may be profitable while adhering to strict emission and material constraints.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fereshteh Samimi ◽  
Mehrzad Feilizadeh ◽  
Seyedeh Bahareh Najibi ◽  
Mohammad Arjmand ◽  
Mohammad Reza Rahimpour

AbstractThe conversion of CO2 to methanol holds great promise, as it offers a pathway to reduce CO2 level in the atmosphere and also produce valuable components. In this study, a typical methanol synthesis plant for CO2 conversion was numerically modeled. Effect of fresh feed to plant parameters (i.e., pressure and CO2 concentration) as well as the influence of recycle ratio on the reactor performance was investigated. Hence, all essential equipment, including compressor, mixer, heat exchanger, reactor, and liquid–vapor separator were considered in the model. Then, at the best operating conditions, thermal behavior and components distribution along the length and radius of the reactor were predicted. Finally, the effect of inert gases was investigated in the methanol production process and the results were compared with the conventional route (CR), which uses natural gas for methanol synthesis. The results revealed that in the absence of inert gases and by employing a recycle stream in the process, CO2 hydrogenation leads to 13 ton/day production of methanol more than CR. While in the feedstock containing 20% inert gases, which is closer to the realistic case, methanol production rate is 45 ton/day lower than CR. These findings prospect a promising approach for the production of green methanol from carbon dioxide and hydrogen.


2020 ◽  
Vol 10 (5) ◽  
pp. 20200010 ◽  
Author(s):  
Holly Jean Buck

Carbon dioxide is a waste product of combusting fossil fuels, and its accumulation in the atmosphere presents a planetary hazard. Carbon dioxide is also managed and used as a resource. Emerging technologies like direct air capture present the opportunity to reclaim and re-use wasted carbon, and actors in industry and policy are increasingly understanding carbon capture, utilization and storage as a waste management process. What is the value, and the danger, of conceptualizing CO 2 as a waste to be managed? This paper looks at the historical evolution of solid and liquid waste regimes to draw lessons for the future evolution of a gaseous waste regime. It finds that social decisions to clean up solid and liquid waste were driven by both culture and industry. Views of recycling and sanitation did not evolve smoothly, with recycling falling in and out of favour, and sanitation experiencing conflict between public and private actors. An earlier attempt to revalue waste as part of a circular economy—the 1930s scientific and industrial field of chemurgy—failed to become a durable term and movement. These experiences hold important takeaways for negative emissions technologies and carbon removal policy: technocratic ideas about resource management may not take hold without a broader popular movement, as in the case of chemurgy, but value change and technology development can support each other, as in the case of wastewater infrastructure. Scientists and carbon removal policy advocates have an opportunity to contextualize CO 2 waste management within the struggles and goals of the larger circular economy project, and to focus simultaneously on both waste production and waste disposal.


2021 ◽  
Vol 24 (2) ◽  
pp. 73-88
Author(s):  
Athanasios Tiliakos ◽  
◽  
Adriana Marinoiu

Carbon Capture, Utilization, and Storage (CCUS) technologies comprise a set of proposed technological solutions (i.e. methods, measures, implementations, and policies) that seek to trap carbon dioxide – the main form of carbon carrier molecule responsible for the greenhouse effect, originating from human economic activities, and destabilizing the planetary climate – before its release into the atmosphere. The aim and function of CCUS manifest as either preventive measures that lock carbon dioxide permanently underground or in other suitable media (Carbon Capture and Storage, CCS), or as redirecting processes that feed it back to augmented industrial cycles for manufacturing products with positive financial impacts (Carbon Dioxide Utilization, CDU). Following recent initiatives at the European level and in view of the larger picture unfolding at the global theater, this digest review aims to deliver the main points, considerations, and dynamics that drive and formulate modern CCUS initiatives, focusing more on the recently surfaced CDU front. We will explore proposed pathways for materializing CDU by looking carefully on unfolding examples from such global and European arenas. We will then scrutinize plausible scenarios for transposing CDU to Romania to ask – and hopefully answer – the right questions as to how such scenarios can materialize.


2019 ◽  
Vol 116 ◽  
pp. 00069
Author(s):  
Roberto Saponelli ◽  
Massimo Milani ◽  
Luca Montorsi ◽  
Bianca Rimini ◽  
Matteo Venturelli ◽  
...  

This paper investigates a new concept for the CO2 emission mitigation in the ceramic industry based on carbon reduction and methane formation. The concept is analysed as a retrofit to the natural gas fuelled ceramic kiln that represents the main responsible of this industry in terms of energy consumption and exhaust emissions. The carbon dioxide conversion to methane is obtained by reduction with hydrogen on a Ni catalyst and thus methane is used to fuel the standard burners that equip the kiln. The paper addresses different sources for the hydrogen used as a feedstock for the proposed concept as well as alternative catalysts are explored and compared in terms of reduction efficiency and costs. A lumped and distributed parameter simulation of the entire ceramic kiln is combined to the CFD simulation of the reactor to estimate the efficiency of the CO2 reduction and the corresponding methane production for a reference ceramic kiln. The results of the numerical simulations are then employed to discuss the potential benefits of the proposed concept in terms of carbon dioxide emission reduction for the ceramic production. An economic assessment of the system analysed is also carried out concept to determine the investment necessary to implement the technology in an existing ceramic kiln. The potential replicability for other industrial sector is also addressed.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 759
Author(s):  
Laura Pires da Mata Costa ◽  
Débora Micheline Vaz de Miranda ◽  
Ana Carolina Couto de Oliveira ◽  
Luiz Falcon ◽  
Marina Stella Silva Pimenta ◽  
...  

Plastic production has been increasing at enormous rates. Particularly, the socioenvironmental problems resulting from the linear economy model have been widely discussed, especially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the many production stages have not been discussed thoroughly. Regarding the manufacturing processes, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical transformations, explaining why first-generation petrochemical industries are among the top five most greenhouse gas (GHG)-polluting businesses. Consequently, the plastics market must pursue full integration with the circular economy approach, promoting the simultaneous recycling of plastic wastes and sequestration and reuse of CO2 through carbon capture and utilization (CCU) strategies, which can be employed for the manufacture of olefins (among other process streams) and reduction of fossil-fuel demands and environmental impacts. Considering the previous remarks, the present manuscript’s purpose is to provide a review regarding CO2 emissions, capture, and utilization in the plastics industry. A detailed bibliometric review of both the scientific and the patent literature available is presented, including the description of key players and critical discussions and suggestions about the main technologies. As shown throughout the text, the number of documents has grown steadily, illustrating the increasing importance of CCU strategies in the field of plastics manufacture.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwarakanath Ravikumar ◽  
Duo Zhang ◽  
Gregory Keoleian ◽  
Shelie Miller ◽  
Volker Sick ◽  
...  

AbstractCarbon capture and utilization for concrete production (CCU concrete) is estimated to sequester 0.1 to 1.4 gigatons of carbon dioxide (CO2) by 2050. However, existing estimates do not account for the CO2 impact from the capture, transport and utilization of CO2, change in compressive strength in CCU concrete and uncertainty and variability in CCU concrete production processes. By accounting for these factors, we determine the net CO2 benefit when CCU concrete produced from CO2 curing and mixing substitutes for conventional concrete. The results demonstrate a higher likelihood of the net CO2 benefit of CCU concrete being negative i.e. there is a net increase in CO2 in 56 to 68 of 99 published experimental datasets depending on the CO2 source. Ensuring an increase in compressive strength from CO2 curing and mixing and decreasing the electricity used in CO2 curing are promising strategies to increase the net CO2 benefit from CCU concrete.


2020 ◽  
Author(s):  
Jennifer A. Rudd ◽  
Ewa Kazimierska ◽  
Louise B. Hamdy ◽  
Odin Bain ◽  
Sunyhik Ahn ◽  
...  

The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher value products. Herein, we describe the use of porous copper electrodes to catalyze the reduction of carbon dioxide into higher value products such as ethylene, ethanol and, notably, propanol. For <i>n</i>-propanol production, faradaic efficiencies reach 4.93% at -0.83 V <i>vs</i> RHE, with a geometric partial current density of -1.85 mA/cm<sup>2</sup>. We have documented the performance of the catalyst in both pristine and urea-modified foams pre- and post-electrolysis. Before electrolysis, the copper electrode consisted of a mixture of cuboctahedra and dendrites. After 35-minute electrolysis, the cuboctahedra and dendrites have undergone structural rearrangement. Changes in the interaction of urea with the catalyst surface have also been observed. These transformations were characterized <i>ex-situ</i> using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We found that alterations in the morphology, crystallinity, and surface composition of the catalyst led to the deactivation of the copper foams.


Sign in / Sign up

Export Citation Format

Share Document