scholarly journals Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dwarakanath Ravikumar ◽  
Duo Zhang ◽  
Gregory Keoleian ◽  
Shelie Miller ◽  
Volker Sick ◽  
...  

AbstractCarbon capture and utilization for concrete production (CCU concrete) is estimated to sequester 0.1 to 1.4 gigatons of carbon dioxide (CO2) by 2050. However, existing estimates do not account for the CO2 impact from the capture, transport and utilization of CO2, change in compressive strength in CCU concrete and uncertainty and variability in CCU concrete production processes. By accounting for these factors, we determine the net CO2 benefit when CCU concrete produced from CO2 curing and mixing substitutes for conventional concrete. The results demonstrate a higher likelihood of the net CO2 benefit of CCU concrete being negative i.e. there is a net increase in CO2 in 56 to 68 of 99 published experimental datasets depending on the CO2 source. Ensuring an increase in compressive strength from CO2 curing and mixing and decreasing the electricity used in CO2 curing are promising strategies to increase the net CO2 benefit from CCU concrete.

This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2020 ◽  
Vol 2 (4) ◽  
pp. 492-512
Author(s):  
Simon P. Philbin

Carbon capture and utilization (CCU) is the process of capturing unwanted carbon dioxide (CO2) and utilizing for further use. CCU offers significant potential as part of a sustainable circular economy solution to help mitigate the impact of climate change resulting from the burning of hydrocarbons and alongside adoption of other renewable energy technologies. However, implementation of CCU technologies faces a number of challenges, including identifying optimal pathways, technology maturity, economic viability, environmental considerations as well as regulatory and public perception issues. Consequently, this research study provides a critical analysis and evaluation of the technology pathways for CCU in order to explore the potential from a circular economy perspective of this emerging area of clean technology. This includes a bibliographic study on CCU, evaluation of carbon utilization processes, trend estimation of CO2 usage as well as evaluation of methane and methanol production. A value chain analysis is provided to support the development of CCU technologies. The research study aims to inform policy-makers engaged in developing strategies to mitigate climate change through reduced carbon dioxide emission levels and improve our understanding of the circular economy considerations of CCU in regard to production of alternative products. The study will also be of use to researchers concerned with pursuing empirical investigations of this important area of sustainability.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Xiaoxiao Meng ◽  
Emad Rokni ◽  
Wei Zhou ◽  
Hongliang Qi ◽  
Rui Sun ◽  
...  

Abstract This work assesses the evolution of acid gases from raw and torrefied biomass (distiller’s dried grains with solubles and rice husk) combustion in conventional (air) and simulated oxy-combustion (oxygen/carbon dioxide) environments. Emphasis was placed on the latter, as oxy-combustion of renewable or waste biomass, coupled with carbon capture and utilization or sequestration, could be a benefit toward mitigating global warming. The oxy-combustion environments were set to 21%O2/79%CO2 and 30%O2/70%CO2. Results revealed that combustion of either raw or torrefied biomass generated CO2 emissions that were lower in 21%O2/79%CO2 than at 30%O2/70%CO2, whereas CO emissions exhibited the opposite trend. Emissions of CO from combustion in air were drastically lower than those in the two oxy-combustion environments and those in 21%O2/79%CO2 were the highest. Emissions of NO followed the same trend as those of CO2, while HCN emissions followed the same trend as those of CO. Emissions of NO were higher than those of HCN. The emissions of SO2 were lower in oxy-combustion than in air combustion. Moreover, combustion of torrefied biomass generated higher CO2 and NO, comparable CO and SO2, and lower HCN emissions than combustion of raw biomass. Out of the three conditions tested in this study, oxy-combustion of biomass, either in the raw and torrefied state, attained the highest combustion effectiveness and caused the lowest CO, HCN, and SO2 emissions when the gas composition was 30%O2/70%CO2.


Concrete is the composite material which is contains cement, coarse and fine aggregate. The real fact is that the concrete production was observed to be 10 billion tons per year, which is double the utilization of other building materials such as timber, steel, etc. Due to the efficient properties of concrete, it is broadly used in the construction of the buildings. To increase the mechanical properties of concrete and to make it more efficient, researcher have been conducting many experiments using various other materials as the substitute of cement, fine aggregate and coarse aggregate. Manufacturing of cement produces more carbon dioxide and thus in turn creates air pollution. In order to decrease carbon dioxide production, minimize the waste materials and to make the concrete eco-friendly and economical, robodust and iron slag has been adopted in this study. In this research, 30% robodust has been replaced with fine aggregate and 10%, 20%, 30%, 40% and 50% iron slag has been replaced with cement. The combination of robodust and iron slag replacement with fine aggregate and cement respectively has shown good increase in mechanical properties of concrete in contrast to conventional concrete.


2021 ◽  
Vol 24 (2) ◽  
pp. 73-88
Author(s):  
Athanasios Tiliakos ◽  
◽  
Adriana Marinoiu

Carbon Capture, Utilization, and Storage (CCUS) technologies comprise a set of proposed technological solutions (i.e. methods, measures, implementations, and policies) that seek to trap carbon dioxide – the main form of carbon carrier molecule responsible for the greenhouse effect, originating from human economic activities, and destabilizing the planetary climate – before its release into the atmosphere. The aim and function of CCUS manifest as either preventive measures that lock carbon dioxide permanently underground or in other suitable media (Carbon Capture and Storage, CCS), or as redirecting processes that feed it back to augmented industrial cycles for manufacturing products with positive financial impacts (Carbon Dioxide Utilization, CDU). Following recent initiatives at the European level and in view of the larger picture unfolding at the global theater, this digest review aims to deliver the main points, considerations, and dynamics that drive and formulate modern CCUS initiatives, focusing more on the recently surfaced CDU front. We will explore proposed pathways for materializing CDU by looking carefully on unfolding examples from such global and European arenas. We will then scrutinize plausible scenarios for transposing CDU to Romania to ask – and hopefully answer – the right questions as to how such scenarios can materialize.


Author(s):  
Ekaterina A. Kuznetsova ◽  
◽  
Alina A. Cherepovitsyna ◽  

Sustainable development of regions, territories, and industrial complexes is becoming increasingly important in the context of global environmental challenges. The practical realization of the sustainability challenges depends more on the implementation of specific technologies, including greenhouse emission mitigation technologies. Today, the development and scaling out of CC(U)S (carbon capture, utilization and storage) technologies seems to be one of the most realistic ways to reduce CO2 emissions. The role of CO2 is changing in the context of circular economy principles, it is no longer considered as industrial waste, but as a valuable resource. The aim of this paper is to analyze and assess the prospects for carbon dioxide utilization, as well as the cost-effectiveness of CC(U)S initiatives (using the example of a CO2-based methanol production project in Iceland) in order to explore the prerequisites and opportunities for the development of such projects in the Arctic. In order to assess the spread of technology worldwide, an analysis of foreign experience in implementing such initiatives is presented, as well as the main promising ways of carbon dioxide utilization and their key features are identified. The economic efficiency of the CO2-based methanol production project (by the example of a commercial project in Iceland) is substantiated. A general vision of the prerequisites and opportunities for the implementation of CC(U)S initiatives in the Arctic regions is presented.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012051
Author(s):  
Z Wang ◽  
S Dehestani ◽  
S Kakay ◽  
Y Sha

Abstract In the cement and concrete industry, enormous amounts of Carbon Dioxide (CO2) are emitted during their production processes. Carbon dioxide emission significantly contributes to the global climate change, which has been one of the biggest challenges of our times. Some novel solutions have been proposed for CO2 capture and storage, as well as reducing CO2 emission in concrete production. Carbonation curing is an effective alternative for conventional water curing for concrete. It can store CO2 in the hardened concrete and meanwhile improve early mechanical properties of concrete. Partial replacement of cement with fly ash shows environmental benefits, such as reducing greenhouse gas emissions and industrial waste destined for landfills. There has been some previous research studying on the effect of carbonation curing on normal Portland concrete in the past decade. Nevertheless, few studies have focused on the CO2 curing for lightweight aggregate concrete (LWAC). In this paper, the influence of early carbonation curing on LWAC is studied. LWAC specimens with two different water-to-cement ratios are cast and cured for a series of experimental investigations. The mechanical and chemical properties including the 1-day compressive strength, 28-day compressive strength, flexural strength, CO2 uptake, heat development, and pH level are investigated. Specimens with ordinary Portland cement are also tested as references in terms of compressive strength and CO2 uptake.


2021 ◽  
Author(s):  
Shoubhik Das ◽  
Robin Cauwenbergh

With the growing awareness of green chemistry, carbon capture and utilization (CCU) has got tremendous attention compared to the carbon capture and storage (CCS). Over the past decades, the development...


2018 ◽  
Vol 280 ◽  
pp. 469-475
Author(s):  
Ahmad Ruslan Mohd Ridzuan ◽  
M.A. Mohd Fauzi ◽  
Mohd Fadzil Arshad ◽  
M.S. Harun ◽  
N. Jasmi

Self-Consolidating Lightweight Foam Concrete (SCLFC) is known as a concrete which has no requirement towards vibration or compaction effort due to its flowability and capability in filling and achieving full compaction in reinforcement. The main component in SCLFC is cement. Cement is a basic component of concrete that used in construction industry. However, it is also the main source of Carbon Dioxide (CO2) emission. If this component of concrete is replaced with other materials, it surely can help in reducing the emission of CO2. Limestone powder can be replacement with the cement content in SCLFC. Therefore, the aim of this paper is to determine the effect of limestone powder on SCLFC in term of flowability and compressive strength. The specimens were tested for compressive strength at 3, 7, and 28 days. The result indicated the flowability of SCLFC increase with the increase of percentages of limestone powder replacement. Meanwhile, the highest compressive strength of SCLFC containing 10% limestone powder replacement give better performance than the normal SCLFC. Based on the finding, SCLFC containing 10% limestone powder replacement can be categorized same as a conventional concrete hence it can be utilized for construction purposes. Limestone powder can also acts as an alternative replacement in concrete for replacing the cement.


Sign in / Sign up

Export Citation Format

Share Document