scholarly journals Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization

2020 ◽  
Vol 2 (4) ◽  
pp. 492-512
Author(s):  
Simon P. Philbin

Carbon capture and utilization (CCU) is the process of capturing unwanted carbon dioxide (CO2) and utilizing for further use. CCU offers significant potential as part of a sustainable circular economy solution to help mitigate the impact of climate change resulting from the burning of hydrocarbons and alongside adoption of other renewable energy technologies. However, implementation of CCU technologies faces a number of challenges, including identifying optimal pathways, technology maturity, economic viability, environmental considerations as well as regulatory and public perception issues. Consequently, this research study provides a critical analysis and evaluation of the technology pathways for CCU in order to explore the potential from a circular economy perspective of this emerging area of clean technology. This includes a bibliographic study on CCU, evaluation of carbon utilization processes, trend estimation of CO2 usage as well as evaluation of methane and methanol production. A value chain analysis is provided to support the development of CCU technologies. The research study aims to inform policy-makers engaged in developing strategies to mitigate climate change through reduced carbon dioxide emission levels and improve our understanding of the circular economy considerations of CCU in regard to production of alternative products. The study will also be of use to researchers concerned with pursuing empirical investigations of this important area of sustainability.

2021 ◽  
Vol 9 ◽  
Author(s):  
Elizabeth J. Abraham ◽  
Farah Ramadan ◽  
Dhabia M. Al-Mohannadi

Growing climate change concerns in recent years have led to an increased need for carbon dioxide emission reduction. This can be achieved by implementing the concept of circular economy, which promotes the practice of resource conservation, emission minimization, and the maintenance of sustainable revenue streams. A considerable amount of carbon dioxide emissions is a consequence of stationary sources from industrial processes. These emissions can be reduced using carbon capture utilization and storage (CCUS) or reduced at source by using emission free renewable resources. The method developed within this work uses mixed integer linear programming (MILP) to design sustainable clusters that convert seawater (including waste brine), air, and waste carbon dioxide emissions to value-added products with sunlight as the main energy source. In this way, circular economy is employed to minimize fresh resource consumption and maximize material reuse. The potential of this work is demonstrated through a case study, which shows that an industrial park may be profitable while adhering to strict emission and material constraints.


2021 ◽  
pp. 17-23
Author(s):  
Szira Zoltán ◽  
Bárdos Kinga Ilona ◽  
Alghamdi Hani ◽  
Enkhjav Tumentsetseg ◽  
Erika Varga

2019 was Earth's second warmest year since 1850. In 2019 the global mean temperature was cooler than in 2016, but warmer than any other year explicitly measured. Consequently, 2016 is still the warmest year in historical observation history. Year-to-year rankings are likely to reflect natural fluctuations in the short term, but the overall pattern remains consistent with a long-term global warming trend. This would be predicted from global warming caused by greenhouse gases, temperature increase across the globe is broadly spread, impacting almost all areas of land and oceans. Climate change" and "global warming" are often used interchangeably but are of distinct significance. Global warming is the long-term heating of the Earth's climate system observed since the pre-industrial period as a result of human activities, mainly the combustion of fossil fuel, which raises the heat-trapping greenhouse gas levels in the Earth's air. The term is often used interchangeably with the term climate change, as the latter applies to warming caused both humanly and naturally, and the impact it has on our planet. This is most generally calculated as the average increase in global surface temperature on Earth. Carbon dioxide emission is one of the main reasons for global warming. Since the Industrial Revolution, human sources of carbon dioxide emissions have been growing. Human activities such as the burning of oil, coal and gas, as well as deforestation are the primary cause of the increased carbon dioxide concentrations in the atmosphere. In our research, let’s examine the relationship between the amount of carbon dioxide emissions and the GDP/capita in developed and developing countries.


Author(s):  
Panji Tirta Nirwana Putra ◽  
Lilis Yuliati ◽  
Endah Kurnia Lestari

Climate change is a phenomenon of environmental damage due to the increased intensity of carbon dioxide emissions in the atmosphere, which causes the surface temperature of the earth. The carbon dioxide emission is a form of environmental degradation caused by economic activities. This study analyzed the relationship of macroeconomic variables and the carbon dioxide emission in each of the four ASEAN countries (Indonesia, Malaysia, the Philippines, and Thailand). The used of macroeconomic variables (GDP, trade openness, energy consumption, and the exchange rate) is shown to explain the carbon dioxide emission. In this study, Vector Auto regression Exogenous (VARX) method is used to analyze the impact of economic activities on the movement of carbon dioxide emissions. The data used time series with a vulnerable time of the year 1981-2013. The estimation results from these studies show that the GDP variable has the greatest contribution to the dynamics of carbon dioxide emissions in each ASEAN 4 countries. This empirical finding suggests that economic activity has an influence on the growth of carbon dioxide emissions.


Author(s):  
Anthony Sclafani

In January 2008 the Governor of Hawaii announced the Hawaii Clean Energy Initiative; an initiative that aims to have at least 70 percent of Hawaii’s power come from clean energy by 2030 [4]. In July 2009, the Hawaii Department of Accounting and General Services awarded NORESCO, an energy service company, a $33.9M contract to improve the energy efficiency of 10 government buildings. The avoided utility cost of the energy and water savings from the improvements is the project funding mechanism. The energy savings realized by the project will reduce carbon dioxide emissions associated with utility power generation. However, as renewable energy becomes a larger portion of the utility generation profile through the Hawaii Clean Energy Initiative, the carbon dioxide emissions reductions from specific energy efficiency measures may erode over time. This work presents a method of analysis to quantify the carbon dioxide emissions reduction over the life of a project generated by energy efficiency upgrades that accounts for both the impact of policy initiatives and climate change using DOE-2/eQUEST. The analysis is based on the fact that HVAC energy usage will vary with climate changes and that carbon dioxide emission reductions will vary with both energy savings and the corresponding utility’s power generation portfolio. The energy savings related to HVAC system energy efficiency improvements are calculated over the life of a 20 year performance contract using a calibrated DOE-2/eQUEST model of an existing building that utilizes weather data adjusted to match the predictions of the Intergovernmental Panel on Climate Change. The carbon dioxide emissions reductions are calculated using the energy savings results and a projection of the implementation of the Hawaii Clean Energy Initiative. The emissions reductions are compared with other analysis methods and discussed to establish more refined expectations of the impact of energy efficiency projects in context with climate changes and policy initiatives.


2015 ◽  
Vol 6 (1) ◽  
pp. 865-906
Author(s):  
K. B. Z. Ogutu ◽  
F. D'Andrea ◽  
M. Ghil ◽  
C. Nyandwi ◽  
M. M. Manene ◽  
...  

Abstract. This study uses the global climate–economy–biosphere (CoCEB) model developed in Part 1 to investigate economic aspects of deforestation control and carbon sequestration in forests, as well as the efficiency of carbon capture and storage (CCS) technologies as policy measures for climate change mitigation. We assume – as in Part 1 – that replacement of one technology with another occurs in terms of a logistic law, so that the same law also governs the dynamics of reduction in carbon dioxide emission using CCS technologies. In order to take into account the effect of deforestation control, a slightly more complex description of the carbon cycle than in Part 1 is needed. Consequently, we add a biomass equation into the CoCEB model and analyze the ensuing feedbacks and their effects on per capita gross domestic product (GDP) growth. Integrating biomass into the CoCEB and applying deforestation control as well as CCS technologies has the following results: (i) low investment in CCS contributes to reducing industrial carbon emissions and to increasing GDP, but further investment leads to a smaller reduction in emissions, as well as in the incremental GDP growth; and (ii) enhanced deforestation control contributes to a reduction in both deforestation emissions and in atmospheric carbon dioxide concentration, thus reducing the impacts of climate change and contributing to a slight appreciation of GDP growth. This effect is however very small compared to that of low-carbon technologies or CCS. We also find that the result in (i) is very sensitive to the formulation of CCS costs, while to the contrary, the results for deforestation control are less sensitive.


Author(s):  
Murat Atasoy ◽  
Filiz Guneysu Atasoy

Tourism industry is one of the primary sectors that contribute to economic growth of countries worldwide. Since it requires appropriate weather conditions and clean environment, climate changes can significantly affect the sector. Therefore, this study examines the causality and long-run relationship between the climate change and tourism sector in Turkey. To estimate the potential long-run relationship between variables, Granger-Causality test is applied to data from 1960 to 2016. The study uses World Development Indicator Data released by World Bank. For the analysis, carbon-dioxide emission, methane emission, energy use (oil equivalent), and forest land are standing for climate change indicators. International tourist arrivals and tourism revenues represent for tourism sector’s variables. The findings show that there is a negative and significant coefficient of climate change on tourism sector. Also, in average, climatic change indicators have unidirectional and negative impact on international tourism revenue. Another finding is that climate change deteriorates to environment by augmenting carbon dioxide emission and methane emission. As a result, climatic change can weaken the tourism industry which can decrease the speed of Turkey’s economic development. In the long run, this research can pioneer assessing the economic and environmental impacts of climate change in the tourism sector bases.


2017 ◽  
Vol II (I) ◽  
pp. 103-117
Author(s):  
Muhammad Mubeen ◽  
Muhammad Qasim Basharat ◽  
Sohail Ahmad

The United Nations Climate Change Regime, planned in 1992, and formally established in 1994 through the inauguration of the United Nations Framework Convention on Climate Change (UNFCCC), under its mandate to address climate change at the global level, provides a great deal of support to maintain global climate control through different institutions in the capacity building of developing states in health, poverty reduction, green energy, and the transfer of carbon dioxide reduction technology. This study intends to ascertain the development of the UN climate change regime and its role in Pakistan's socio-economic development for a sustainable climate from 1992 to 2016. The variables to determine the degree of UNFCCC's efforts in Pakistan include public health, poverty reduction, agricultural improvement, carbon dioxide emission control, international trade collaboration, and gender-oriented societal improvements. The study highlights the impact of efforts on these lines and the possible incentives to crop up substantially the fruits of the given considerable opportunity to develop the socioeconomic slant positively. This exploratory study is based on primary and secondary data, annual reports of different UN organs, especially the UNFCCC, official data from the Ministry of Climate Change Pakistan, surveys, interviews from the field experts, and peer-reviewed published research.


Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Jevtic ◽  
C Bouland

Abstract Public health professionals (PHP) have a dual task in climate change. They should persuade their colleagues in clinical medicine of the importance of all the issues covered by the GD. The fact that the health sector contributes to the overall emissions of 4.4% speaks to the lack of awareness within the health sector itself. The issue of providing adequate infrastructure for the health sector is essential. Strengthening the opportunities and development of the circular economy within healthcare is more than just a current issue. The second task of PHP is targeting the broader population. The public health mission is being implemented, inter alia, through numerous activities related to environmental monitoring and assessment of the impact on health. GD should be a roadmap for priorities and actions in public health, bearing in mind: an ambitious goal of climate neutrality, an insistence on clean, affordable and safe energy, a strategy for a clean and circular economy. GD provides a framework for the development of sustainable and smart transport, the development of green agriculture and policies from field to table. It also insists on biodiversity conservation and protection actions. The pursuit of zero pollution and an environment free of toxic chemicals, as well as incorporating sustainability into all policies, is also an indispensable part of GD. GD represents a leadership step in the global framework towards a healthier future and comprises all the non-EU members as well. The public health sector should consider the GD as an argument for achieving goals at national levels, and align national public health policies with the goals of this document. There is a need for stronger advocacy of health and public-health interests along with incorporating sustainability into all policies. Achieving goals requires the education process for healthcare professionals covering all of topics of climate change, energy and air pollution to a much greater extent than before.


Sign in / Sign up

Export Citation Format

Share Document