scholarly journals Expanding the molecular-ruler process through vapor deposition of hexadecanethiol

2017 ◽  
Vol 8 ◽  
pp. 2339-2344 ◽  
Author(s):  
Alexandra M Patron ◽  
Timothy S Hooker ◽  
Daniel F Santavicca ◽  
Corey P Causey ◽  
Thomas J Mullen

The development of methods to produce nanoscale features with tailored chemical functionalities is fundamental for applications such as nanoelectronics and sensor fabrication. The molecular-ruler process shows great utility for this purpose as it combines top-down lithography for the creation of complex architectures over large areas in conjunction with molecular self-assembly, which enables precise control over the physical and chemical properties of small local features. The molecular-ruler process, which most commonly uses mercaptoalkanoic acids and metal ions to generate metal-ligated multilayers, can be employed to produce registered nanogaps between metal features. Expansion of this methodology to include molecules with other chemical functionalities could greatly expand the overall versatility, and thus the utility, of this process. Herein, we explore the use of alkanethiol molecules as the terminating layer of metal-ligated multilayers. During this study, it was discovered that the solution deposition of alkanethiol molecules resulted in low overall surface coverage with features that varied in height. Because features with varied heights are not conducive to the production of uniform nanogaps via the molecular-ruler process, the vapor-phase deposition of alkanethiol molecules was explored. Unlike the solution-phase deposition, alkanethiol islands produced by vapor-phase deposition exhibited markedly higher surface coverages of uniform heights. To illustrate the applicability of this method, metal-ligated multilayers, both with and without an alkanethiol capping layer, were utilized to create nanogaps between Au features using the molecular-ruler process.

2018 ◽  
Vol 24 (21) ◽  
pp. 2425-2431 ◽  
Author(s):  
Cao Wu ◽  
Zhou Chen ◽  
Ya Hu ◽  
Zhiyuan Rao ◽  
Wangping Wu ◽  
...  

Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3610
Author(s):  
Jialin Yu ◽  
Huayu Qiu ◽  
Shouchun Yin ◽  
Hebin Wang ◽  
Yang Li

Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.


2014 ◽  
Vol 940 ◽  
pp. 173-178
Author(s):  
Xiao Long Tang ◽  
Chun Ming Geng

In modern industrial processing of the materials, the solution spraying technology is widely used. Spraying a layer of special solution plays an important role to change their physical and chemical properties. Based on single-axis servo control, precision solution spraying system is able to spray a very thin and a uniform layer of solution on the surface of materials as required. The spraying system mechanical structure is mainly composed of these parts: housing, single-axis servo translation stage, push-pull syringe, multifunctional nozzle and other components. The servo translation stage is capable of providing precise control of speed and stroke by using a specialized controller and driver. The system is running stably and smoothly throughout the experiments after the completion of the entire system assembly and it can fully comply with the requirements of customers with excellent sealing performance, feature-rich and human-friendly control interface and compact mechanical structure.


2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


RSC Advances ◽  
2017 ◽  
Vol 7 (78) ◽  
pp. 49463-49472 ◽  
Author(s):  
Mohammad Hadi Nematollahi ◽  
Abbas Pardakhty ◽  
Masoud Torkzadeh-Mahanai ◽  
Mehrnaz Mehrabani ◽  
Gholamreza Asadikaram

Recently, the self-assembly property of nonionic surfactants has been utilized to create vesicles as alternatives to liposomes.


2011 ◽  
Vol 492 ◽  
pp. 160-163
Author(s):  
Cai Xia Li ◽  
Qing Lv ◽  
Jie Song ◽  
Dan Yu Jiang ◽  
Qiang Li

Nano-sheets are two-dimensional sheet materials exfoliated from the inorganic layered compounds by various physical and chemical methods. Their unique characteristics insertion reaction and excellent physical and chemical properties have attracted more and more researchers' widespread interests. Selecting quartz glass as the substrate, using layer by layer self-assembly technology, different nano-films materials are prepared. UV/Vis spectroscopy confirmed nano-films materials have been successfully assembled using LBL self-assembly technique. Raman spectrum are mainly used to analyze and characterize the structure of nano-films materials.


Author(s):  
Kristina Ivana Fabijanic ◽  
Aída Ninfa Salinas López ◽  
Long Pan ◽  
Chi-Yuan Cheng ◽  
Yu Wang ◽  
...  

AbstractThere is an increasing need for materials with tunable physical and chemical properties that are relatively non-toxic and efficacious for their intended application. Many wood stains and finishes emit toxic chemicals which may have serious implications to one’s health. A novel alternative material is realized between xanthan gum and Neodol, a non-ionic surfactant. The resulting three-dimensional film is evaluated as a free-radical scavenger for the protection of wood at different ratios. Atomic force microscopy visualizes the topography and quantifies the local nanomechanics, while rheological measurements showcase a shift from viscoelastic material to gel. Electron plasmon resonance confirms the free-radical reducing ability (3.5 times), while liquid chromatography mass spectroscopy quantifies the UV degradation of sinapyl alcohol. This material has potential, not only in coating industries as a safer option, but also in those industries requiring flexibility and tenability, namely for biosensors and anti-inflammatory therapeutics. Graphic abstract


Science ◽  
2020 ◽  
Vol 368 (6491) ◽  
pp. 642-648 ◽  
Author(s):  
Wenfeng Jiang ◽  
Zhi-bei Qu ◽  
Prashant Kumar ◽  
Drew Vecchio ◽  
Yuefei Wang ◽  
...  

The structural complexity of composite biomaterials and biomineralized particles arises from the hierarchical ordering of inorganic building blocks over multiple scales. Although empirical observations of complex nanoassemblies are abundant, the physicochemical mechanisms leading to their geometrical complexity are still puzzling, especially for nonuniformly sized components. We report the self-assembly of hierarchically organized particles (HOPs) from polydisperse gold thiolate nanoplatelets with cysteine surface ligands. Graph theory methods indicate that these HOPs, which feature twisted spikes and other morphologies, display higher complexity than their biological counterparts. Their intricate organization emerges from competing chirality-dependent assembly restrictions that render assembly pathways primarily dependent on nanoparticle symmetry rather than size. These findings and HOP phase diagrams open a pathway to a large family of colloids with complex architectures and unusual chiroptical and chemical properties.


2020 ◽  
Vol 6 (19) ◽  
pp. eaba5337 ◽  
Author(s):  
A. Al Harraq ◽  
J. G. Lee ◽  
B. Bharti

Suprastructures at the colloidal scale must be assembled with precise control over local interactions to accurately mimic biological complexes. The toughest design requirements include breaking the symmetry of assembly in a simple and reversible fashion to unlock functions and properties so far limited to living matter. We demonstrate a simple experimental technique to program magnetic field–induced interactions between metallodielectric patchy particles and isotropic, nonmagnetic “satellite” particles. By controlling the connectivity, composition, and distribution of building blocks, we show the assembly of three-dimensional, multicomponent supraparticles that can dynamically reconfigure in response to change in external field strength. The local arrangement of building blocks and their reconfigurability are governed by a balance of attraction and repulsion between oppositely polarized domains, which we illustrate theoretically and tune experimentally. Tunable, bulk assembly of colloidal matter with predefined symmetry provides a platform to design functional microstructured materials with preprogrammable physical and chemical properties.


Author(s):  
Brigid R. Hey wood ◽  
Caroline German

Anisotropic inorganic materials are desirable as they possess unique physical and chemical properties resulting from the manner in which the particulate components assemble. The facility to control the ordering of colloidal inorganic particles could presage dramatic improvements in the fabrication of ceramics, catalysts or paints. Biological systems have already harnessed the manifold advantages of such materials, consider shells, teeth, bones etc.(Figures 1 & 2). Synthetic strategies for the formation of nanodimensional inorganic solids abound but there are few reliable methods currently available for directing their subsequent aggregation. Some degree of ordering can be achieved by the application of external forces (magnetic, electrical) but the aggregates readily dissemble once the stimulus is removed. The requirement is, therefore, for an effective molecular route to the ordered assembly and construction of hierarchical inorganic microstructures.The present work forms part of an extended programme of research investigating crystal tectonics, the ordering of nanodimensional inorganic solids. Here, the controlled morphological tailoring of inorganic crystals to yield a form which favours self-assembly has been investigated.


Sign in / Sign up

Export Citation Format

Share Document