Nanocrystals: The Preparation, Precise Control and Application Toward the Pharmaceutics and Food Industry

2018 ◽  
Vol 24 (21) ◽  
pp. 2425-2431 ◽  
Author(s):  
Cao Wu ◽  
Zhou Chen ◽  
Ya Hu ◽  
Zhiyuan Rao ◽  
Wangping Wu ◽  
...  

Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods.

2020 ◽  
Vol 15 ◽  

This paper presents the results of practical mechanical tests of motor oils, their specifications and characteristics and the effect of their physical and chemical properties on the performance of the engine. The performance of the engine has a strong relation with the engine oil type and efficiency. The degree of stability of oils properties is very important because if oil or lubricants lose their properties, mechanical and chemical excessive corrosion of the motor metals may occur. Consequently, damage occurs to one or more parts of the engine, thereby the system is breaking down where the cost of downtime is too expensive. It has been found that a higher viscosity value is not the optimum as it increases temperature and energy consumption due to frictional losses. The values required for viscosity is the ideals that gives the stable results regardless temperature variations under any conditions of operation, at which the power losses are minimal and the fuel economy is optimal.


2013 ◽  
Vol 816-817 ◽  
pp. 65-69
Author(s):  
Yi Zhang

New materials play an important part in today high and new technology.Superconducting nanomaterial has become the most vibrant in new material research due to its unique physical and chemical properties. This paper focuses on how small-size effect affects superconducting transition temperature, and summarizes the concrete preparation methods of superconducting nanomaterials, hoping to provide a reference for material researchers.


2012 ◽  
pp. 99-104
Author(s):  
Éva Kónya ◽  
Zoltán Győri

Near-infrared spectroscopy has many advantages that make it a widely used analitical method in the different areas, like agricultural and food industry as well. In wheat quality control rheological characteristics of dough made from wheat flour are as important as physical and chemical properties too. In this work we examined rheological properties of wheat flour samples by alveograph, and spectral data of the same samples were collected by FOSS Infratec 1241 instrument. Modified partial least squares analyses on NIR spectra were developed for two alveograph parameter (P/L és W) to get calibration equations.


2019 ◽  
Vol 803 ◽  
pp. 158-166 ◽  
Author(s):  
Yu Lin Li ◽  
Bin Huan Sun

As the nanotechnology rapidly develops, the combination of nanotechnology and biotechnology to build nanoparticles with biological functionalization has brought new opportunities for the development and application of biomedical diagnosis. Many new non-viral drug/gene vectors were constructed by using nanoparticles as drug/gene carriers, especially by making conventional inorganic materials into nanoparticles and performing functional modifications. In this paper, the physical and chemical properties, preparation methods and application in drug/gene transport of several nanomaterials including mesoporous silica nanoparticles, gold nanoparticles, dendrimers, graphene oxide and carbon nanotubes are reviewed respectively. At the same time, the merit and dismerit of different nanocarriers and their application scenarios are compared. It has been found that the excellent biocompatibility and large specific surface area of inorganic nanomaterials have great potential for drug/gene delivery. Although there are many bottlenecks and challenges for nanomaterials to settle during drug delivery development and industrial production, the improvement of inorganic nanomaterials and the development of new nanocarriers can promote the wider progress of nanocarriers in drug/gene transport.


2018 ◽  
Vol 7 (12) ◽  
pp. 490 ◽  
Author(s):  
Daniel Teleanu ◽  
Cristina Chircov ◽  
Alexandru Grumezescu ◽  
Adrian Volceanov ◽  
Raluca Teleanu

Nanoparticles are zero-dimensional nanomaterials and, based on their nature, they can be categorized into organic, inorganic, and composites nanoparticles. Due to their unique physical and chemical properties, nanoparticles are extensively used in a variety of fields, including medicine, pharmaceutics, and food industry. Although they have the potential to improve the diagnosis and treatment of brain diseases, it is fundamentally important to develop standardized toxicological studies, which can prevent the induction of neurotoxic effects. The focus of this review is to emphasize both the beneficial and negative effects of nanoparticles on brain health.


2020 ◽  
Vol 28 ◽  
Author(s):  
Shan Liu ◽  
Xing-Xiang Ji ◽  
Jie-Fang Zhu

Background: Natural biopolymers have drawn extensive attention because of their great biocompatibility, biodegradability, renewability, and the availability of various reactive functional groups for modifying and introducing novel components. In the last few years, numerous natural biopolymer composites have been exploited to improve their physical and chemical properties and add new functionalities. Methods: Herein, we summarize the current progress of three common classes of natural biopolymer-based composites including alginate, chitosan, and gelatin. Results: The morphology characteristics, preparation methods, and unique functionalities of these biopolymer composites are also analyzed and discussed. Results: The morphology characteristics, preparation methods, and unique functionalities of these biopolymer composites are also analyzed and discussed. Conclusion: Finally, the article offers an overview of recent progress of the main biomedical applications such as tissue engineering, wound-healing, and drug delivery, which inspires further progress of biopolymer composites with tailored mechanical property and stable characteristics for pharmaceutical and biomedical applications.


RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79706-79722 ◽  
Author(s):  
Baoqiang Xu ◽  
Hong Yong Sohn ◽  
Yousef Mohassab ◽  
Yuanpei Lan

The crystal structure, physical and chemical properties, preparation methods and applications of titanium suboxides (TinO2n−1, n = integer greater than one) have recently attracted tremendous attention.


2013 ◽  
Vol 662 ◽  
pp. 76-79
Author(s):  
Fei Huang ◽  
Ai Hua Yan ◽  
Zheng Yi Fu ◽  
Fan Zhang ◽  
Ying Huai Qiang ◽  
...  

Hierarchical ZrO2 nanorods have recently received considerable attention due to their special physical and chemical properties. However, traditional preparation methods are involved in expensive equipment, complicated process and high production cost. Here we report a simple hydrothermal approach to prepare hierarchical ZrO2 nanorod. The results show that as-synthesized products are composed of many nanorods with 80~150 nm in diameter and 15~20 μm in length. After annealing, the final product was involved into hierarchical monoclinic ZrO2 (m-ZrO2) nanorods, namely, the big nanorod was made up of many small nanorods with 20~30 nm in diameter and 300~500 nm in length. The possible formation mechanism was proposed based on a series of chemical reactions and the natural properties of zirconium.


2020 ◽  
Vol 9 (5) ◽  
pp. e161953212
Author(s):  
Jackeline Cintra Soares ◽  
Manoel Soares Soares Júnior ◽  
Iramaia Angélica Neri Numa ◽  
Gláucia Maria Pastore ◽  
Márcio Caliari

The objective of this work was to evaluate the influence of different proportions of jambolan pulp, sugar and water on the physical and chemical characteristics to obtain information that allows the use of jambolan and, consequently, the evaluation of these fruits. Six jambolan nectar formulations were established through Simplex design. Ingredients significantly affected luminosity (32,14-34,24), apparent viscosity (7.8-73.8 cP), total soluble solids (8.87-26.43 °Brix), titratable acidity (0.55 -0.83g citric acid 100g-1) and the TSS / TA ratio (16.05-34.96) in jambolan nectars. Jambolan nectar with 55g 100g-1 of jambolan pulp, 15g 100g-1 of sugar and 30g 100g-1 of water has the highest desirability in relation to physical and physicochemical properties, 85.1% DPPH inhibition, 10526.12 μg TE mL-1 and 27014.25 μmol TE mL-1 by ABTS and ORAC method, respectively. It could be concluded that it is possible to produce jambolan nectar which can increase the possibilities of applying fruit as an ingredient in the food industry.


Sign in / Sign up

Export Citation Format

Share Document