scholarly journals Visible-light-induced, Ir-catalyzed reactions of N-methyl-N-((trimethylsilyl)methyl)aniline with cyclic α,β-unsaturated carbonyl compounds

2014 ◽  
Vol 10 ◽  
pp. 890-896 ◽  
Author(s):  
Dominik Lenhart ◽  
Thorsten Bach

N-Methyl-N-((trimethylsilyl)methyl)aniline was employed as reagent in visible-light-induced, iridium-catalyzed addition reactions to cyclic α,β-unsaturated carbonyl compounds. Typical reaction conditions included the use of one equivalent of the reaction substrate, 1.5 equivalents of the aniline and 2.5 mol % (in MeOH) or 1.0 mol % (in CH2Cl2) [Ir(ppy)2(dtbbpy)]BF4 as the catalyst. Two major reaction products were obtained in combined yields of 30–67%. One product resulted from aminomethyl radical addition, the other product was a tricyclic compound, which is likely formed by attack of the intermediately formed α-carbonyl radical at the phenyl ring. For five-membered α,β-unsaturated lactone and lactam substrates, the latter products were the only products isolated. For the six-membered lactones and lactams and for cyclopentenone the simple addition products prevailed.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guang-Mei Cao ◽  
Xin-Long Hu ◽  
Li-Li Liao ◽  
Si-Shun Yan ◽  
Lei Song ◽  
...  

AbstractPhotoredox-mediated umpolung strategy provides an alternative pattern for functionalization of carbonyl compounds. However, general approaches towards carboxylation of carbonyl compounds with CO2 remain scarce. Herein, we report a strategy for visible-light photoredox-catalyzed umpolung carboxylation of diverse carbonyl compounds with CO2 by using Lewis acidic chlorosilanes as activating/protecting groups. This strategy is general and practical to generate valuable α-hydroxycarboxylic acids. It works well for challenging alkyl aryl ketones and aryl aldehydes, as well as for α-ketoamides and α-ketoesters, the latter two of which have never been successfully applied in umpolung carboxylations with CO2 (to the best of our knowledge). This reaction features high selectivity, broad substrate scope, good functional group tolerance, mild reaction conditions and facile derivations of products to bioactive compounds, including oxypheonium, mepenzolate bromide, benactyzine, and tiotropium. Moreover, the formation of carbon radicals and carbanions as well as the key role of chlorosilanes are supported by control experiments.


Author(s):  
Mizzanoor Rahaman ◽  
M. Shahnawaz Ali ◽  
Khorshada Jahan ◽  
Damon Hinz ◽  
Jawad Bin Belayet ◽  
...  

2021 ◽  
Vol 6 (12) ◽  
pp. 2980-2987
Author(s):  
Savita Kumari ◽  
Suresh Kumar Maury ◽  
Himanshu Kumar Singh ◽  
Arsala Kamal ◽  
Dhirendra Kumar ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4070
Author(s):  
Golbon Rezaei ◽  
Giovanni Meloni

In recent years, biofuels have been receiving significant attention because of their potential for decreasing carbon emissions and providing a long-term renewable solution to unsustainable fossil fuels. Currently, lactones are some of the alternatives being produced. Many lactones occur in a range of natural substances and have many advantages over bioethanol. In this study, the oxidation of alpha-angelica lactone initiated by ground-state atomic oxygen, O(3P), was studied at 298, 550, and 700 K using synchrotron radiation coupled with multiplexed photoionization mass spectrometry at the Lawrence Berkeley National Lab (LBNL). Photoionization spectra and kinetic time traces were measured to identify the primary products. Ketene, acetaldehyde, methyl vinyl ketone, methylglyoxal, dimethyl glyoxal, and 5-methyl-2,4-furandione were characterized as major reaction products, with ketene being the most abundant at all three temperatures. Possible reaction pathways for the formation of the observed primary products were computed using the CBS–QB3 composite method.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 502
Author(s):  
Agata J. Pacuła-Miszewska ◽  
Anna Laskowska ◽  
Anna Kmieciak ◽  
Mariola Zielińska-Błajet ◽  
Marek P. Krzemiński ◽  
...  

A series of new bidentate N,S-ligands—aziridines containing a para-substituted phenyl sulfide group—was synthesized and evaluated in the Pd-catalyzed Tsuji–Trost reaction and addition of diethylzinc and phenylethynylzinc to benzaldehyde. A high enantiomeric ratio for the addition reactions (up to 94.2:5.8) was obtained using the aziridine ligand bearing a p-nitro phenyl sulfide group. Collected results reveal a specific electronic effect that, by the presence of particular electron-donating or electron-withdrawing groups in the PhS- moiety, influences the σ-donor–metal binding and the enantioselectivity of the catalyzed reactions.


Synthesis ◽  
2020 ◽  
Author(s):  
Jia-Jia Zhao ◽  
Hong-Hao Zhang ◽  
Shouyun Yu

Visible light photoredox catalysis has recently emerged as a powerful tool for the development of new and valuable chemical transformations under mild conditions. Visible-light promoted enantioselective radical transformations of imines and iminium intermediates provide new opportunities for the asymmetric synthesis of amines and asymmetric β-functionalization of unsaturated carbonyl compounds. In this review, the advance in the catalytic asymmetric radical functionalization of imines, as well as iminium intermediates, are summarized. 1 Introduction 2 The enantioselective radical functionalization of imines 2.1 Asymmetric reduction 2.2 Asymmetric cyclization 2.3 Asymmetric addition 2.4 Asymmetric radical coupling 3 The enantioselective radical functionalization of iminium ions 3.1 Asymmetric radical alkylation 3.2 Asymmetric radical acylation 4 Conclusion


2010 ◽  
Vol 65 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Boja Poojary ◽  
Lim Hee-Jong

Ring-opening addition reactions of 1-tert-butoxycarbonyl-3,4-epoxypiperidine leading to the formation of the corresponding regioisomeric trans-β -aminoalcohols were carried out with three different types of amine nucleophiles under different reaction conditions with a view to study the reactivity and regioselectivity.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 556
Author(s):  
Bonwoo Koo ◽  
Haneul Yoo ◽  
Ho Jeong Choi ◽  
Min Kim ◽  
Cheoljae Kim ◽  
...  

The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries.


Sign in / Sign up

Export Citation Format

Share Document