scholarly journals Et3B-mediated and palladium-catalyzed direct allylation of β-dicarbonyl compounds with Morita–Baylis–Hillman alcohols

2016 ◽  
Vol 12 ◽  
pp. 2402-2409 ◽  
Author(s):  
Ahlem Abidi ◽  
Yosra Oueslati ◽  
Farhat Rezgui

A practical and efficient palladium-catalyzed direct allylation of β-dicarbonyl compounds with both cyclic and acyclic Morita–Baylis–Hillman (MBH) alcohols, using Et3B as a Lewis acid promoter, is described herein. A wide range of the corresponding functionalized allylated derivatives have been obtained in good yields and with high selectivity.

2020 ◽  
Author(s):  
Alena Vasquez ◽  
John Gurak ◽  
Candice Joe ◽  
Emily Cherney ◽  
Keary Engle

The palladium-catalyzed, α-selective hydroarylation of acrylates and acrylamides is reported. Under optimized conditions, this method is highly tolerant of a wide range of substrates including those with base sensitive functional groups and/or multiple enolizable carbonyl groups. A detailed mechanistic study was undertaken, and the high selectivity of this transformation was shown to be enabled by the formation of an [Pd<sup>II</sup>(Ar)(H)] intermediate, which performs selective hydride insertion into the β-position of α,β-unsaturated carbonyl compounds. <br>


2020 ◽  
Author(s):  
Alena Vasquez ◽  
John Gurak ◽  
Candice Joe ◽  
Emily Cherney ◽  
Keary Engle

The palladium-catalyzed, α-selective hydroarylation of acrylates and acrylamides is reported. Under optimized conditions, this method is highly tolerant of a wide range of substrates including those with base sensitive functional groups and/or multiple enolizable carbonyl groups. A detailed mechanistic study was undertaken, and the high selectivity of this transformation was shown to be enabled by the formation of an [Pd<sup>II</sup>(Ar)(H)] intermediate, which performs selective hydride insertion into the β-position of α,β-unsaturated carbonyl compounds. <br>


2020 ◽  
Author(s):  
Kiron Kumar Ghosh ◽  
Alexander Uttry ◽  
Francesca Ghiringhelli ◽  
Arup Mondal ◽  
Manuel van Gemmeren

We report the ligand enabled C(sp3)–H activation/olefination of free carboxylic acids in the γ-position. Through an intramolecular Michael-addition, δ-lactones are obtained as products. Two distinct ligand classes are identified that enable the challenging palladium-catalyzed activation of free carboxylic acids in the γ-position. The developed protocol features a wide range of acid substrates and olefin reaction partners and is shown to be applicable on a preparatively useful scale. Insights into the underlying reaction mechanism obtained through kinetic studies are reported.<br>


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


2020 ◽  
Author(s):  
Thomas Louis-Goff ◽  
Huu Vinh Trinh ◽  
Eileen Chen ◽  
Arnold L. Rheingold ◽  
Christian Ehm ◽  
...  

A new, efficient, catalytic difluorocarbenation of olefins to give 1,1-difluorocyclopropanes is presented. The catalyst, an organobismuth complex, uses TMSCF<sub>3</sub> as a stoichiometric difluorocarbene source. We demonstrate both the viability and robustness of this reaction over a wide range of alkenes and alkynes, including electron-poor alkenes, to generate the corresponding 1,1-difluorocyclopropanes and 1,1-difluorocyclopropenes. Ease of catalyst recovery from the reaction mixture is another attractive feature of this method. In depth experimental and theoretical studies showed that the key difluorocarbene-generating step proceeds through a bismuth non-redox synchronous mechanism generating a highly reactive free CF<sub>2</sub> in an endergonic pre-equilibrium. It is the reversibility when generating the difluorocarbene that accounts for the high selectivity, while minimizing CF<sub>2</sub>-recombination side-reactions.


2020 ◽  
Vol 24 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Shima Roshankar ◽  
Fatemeh Mohajer ◽  
Alireza Badiei

Abstract:: Mesoporous silica nanomaterials provide an extraordinary advantage for making new and superior heterogeneous catalysts because of their surface silanol groups. The functionalized mesoporous SBA-15, such as acidic, basic, BrÖnsted, lewis acid, and chiral catalysts, are used for a wide range of organic synthesis. The importance of the chiral ligands, which were immobilized on the SBA-15, was mentioned in this review to achieve chiral products as valuable target molecules. Herein, their synthesis and application in different organic transformations are reviewed from 2016 till date 2020.


2021 ◽  
Vol 27 (1) ◽  
pp. 17-23
Author(s):  
Guniganti Balakishan ◽  
Gullapalli Kumaraswamy ◽  
Vykunthapu Narayanarao ◽  
Pagilla Shankaraiah

Abstract A Cu(II)-catalyzed Csp2-Se and Csp2-Sulfur bond formation was achieved with moderate to good yields without the aid of Lewis acid and base. The reaction is compatible with a wide range of heterocycles such as benzothiazole, thiazole, and imidazole. Also, this typical protocol is found to be active in thio-selenation via S-H activation. Additionally, we proposed a plausible mechanistic pathway involving Cu(III) putative intermediate.


Synlett ◽  
2017 ◽  
Vol 28 (18) ◽  
pp. 2425-2428 ◽  
Author(s):  
Bill Morandi ◽  
Yong Lee

We report that a Lewis acidic silane, Me2SiHCl, can mediate the direct cross-coupling of a wide range of carbonyl compounds with alcohols to form dialkyl ethers. The reaction is operationally simple, tolerates a range of polar functional groups, can be utilized to make sterically hindered ethers, and is extendable to sulfur and nitrogen nucleo­philes.


ChemInform ◽  
2015 ◽  
Vol 46 (51) ◽  
pp. no-no
Author(s):  
Miles Kenny ◽  
Jeppe Christensen ◽  
Simon J. Coles ◽  
Vilius Franckevicius

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Lan ◽  
Sidra Farid ◽  
Xenia Meshik ◽  
Ke Xu ◽  
Min Choi ◽  
...  

DNA aptamers have the ability to bind to target molecules with high selectivity and therefore have a wide range of clinical applications. Herein, a graphene substrate functionalized with a DNA aptamer is used to sense immunoglobulin E. The graphene serves as the conductive substrate in this field-effect-transistor-like (FET-like) structure. A voltage probe in an electrolyte is used to sense the presence of IgE as a result of the changes in the charge distribution that occur when an IgE molecule binds to the IgE DNA-based aptamer. Because IgE is an antibody associated with allergic reactions and immune deficiency-related diseases, its detection is of utmost importance for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document