scholarly journals How and why kinetics, thermodynamics, and chemistry induce the logic of biological evolution

2017 ◽  
Vol 13 ◽  
pp. 665-674 ◽  
Author(s):  
Addy Pross ◽  
Robert Pascal

Thermodynamic stability, as expressed by the Second Law, generally constitutes the driving force for chemical assembly processes. Yet, somehow, within the living world most self-organisation processes appear to challenge this fundamental rule. Even though the Second Law remains an inescapable constraint, under energy-fuelled, far-from-equilibrium conditions, populations of chemical systems capable of exponential growth can manifest another kind of stability, dynamic kinetic stability (DKS). It is this stability kind based on time/persistence, rather than on free energy, that offers a basis for understanding the evolutionary process. Furthermore, a threshold distance from equilibrium, leading to irreversibility in the reproduction cycle, is needed to switch the directive for evolution from thermodynamic to DKS. The present report develops these lines of thought and argues against the validity of a thermodynamic approach in which the maximisation of the rate of energy dissipation/entropy production is considered to direct the evolutionary process. More generally, our analysis reaffirms the predominant role of kinetics in the self-organisation of life, which, in turn, allows an assessment of semi-quantitative constraints on systems and environments from which life could evolve.

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 498
Author(s):  
Hillary H. Smith ◽  
Andrew S. Hyde ◽  
Danielle N. Simkus ◽  
Eric Libby ◽  
Sarah E. Maurer ◽  
...  

In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent “grayness” blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.


1999 ◽  
Vol 3 (1) ◽  
pp. 79-103 ◽  
Author(s):  
Bart de Boer

This paper describes computer simulations that investigate the role of self-organisation in explaining the universals of human vowel systems. It has been observed that human vowel systems show remarkable regularities, and that these regularities optimise acoustic distinctiveness and are therefore adaptive for good communication. Traditionally, universals have been explained as the result of innate properties of the human language faculty, and therefore need an evolutionary explanation. In this paper it is argued that the regularities emerge as the result of self-organisation in a population and therefore need not be the result of biological evolution. The hypothesis is investigated with two different computer simulations that are based on a population of agents that try to imitate each other as well as possible. Each agent can produce and perceive vowels in a human-like way and stores vowels as articulatory and acoustic prototypes. The aim of the agents is to imitate each other as well as possible. It will be shown that successful repertoires of vowels emerge that show the same regularities as human vowel systems.


Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


Author(s):  
V.I. Bol’shakov ◽  
◽  
Yu.I. Dubrov ◽  
Keyword(s):  

Author(s):  
Steven E. Vigdor

Chapter 7 describes the fundamental role of randomness in quantum mechanics, in generating the first biomolecules, and in biological evolution. Experiments testing the Einstein–Podolsky–Rosen paradox have demonstrated, via Bell’s inequalities, that no local hidden variable theory can provide a viable alternative to quantum mechanics, with its fundamental randomness built in. Randomness presumably plays an equally important role in the chemical assembly of a wide array of polymer molecules to be sampled for their ability to store genetic information and self-replicate, fueling the sort of abiogenesis assumed in the RNA world hypothesis of life’s beginnings. Evidence for random mutations in biological evolution, microevolution of both bacteria and antibodies and macroevolution of the species, is briefly reviewed. The importance of natural selection in guiding the adaptation of species to changing environments is emphasized. A speculative role of cosmological natural selection for black-hole fecundity in the evolution of universes is discussed.


Author(s):  
Witold Kwasnicki

AbstractThis paper presents an evolutionary model of industry development, and uses simulations to investigation the role of diversity and heterogeneity in firms’ behaviour, and hence industrial development. The simulations suggest that economic growth is increased with greater variety, in the sense of the evolutionary process approaching the equilibrium faster and also, in the long run, moving faster from one equilibrium to a new, more advanced, equilibrium. This occurs due to higher variety caused by a more tolerant environment, and due to the higher probability of emergence of radical innovations.


2005 ◽  
Vol 187 (24) ◽  
pp. 8322-8331 ◽  
Author(s):  
Renate Dippel ◽  
Winfried Boos

ABSTRACT The maltose/maltodextrin regulon of Escherichia coli consists of 10 genes which encode a binding protein-dependent ABC transporter and four enzymes acting on maltodextrins. All mal genes are controlled by MalT, a transcriptional activator that is exclusively activated by maltotriose. By the action of amylomaltase, we prepared uniformly labeled [14C]maltodextrins from maltose up to maltoheptaose with identical specific radioactivities with respect to their glucosyl residues, which made it possible to quantitatively follow the rate of transport for each maltodextrin. Isogenic malQ mutants lacking maltodextrin phosphorylase (MalP) or maltodextrin glucosidase (MalZ) or both were constructed. The resulting in vivo pattern of maltodextrin metabolism was determined by analyzing accumulated [14C]maltodextrins. MalP− MalZ+ strains degraded all dextrins to maltose, whereas MalP+ MalZ− strains degraded them to maltotriose. The labeled dextrins were used to measure the rate of transport in the absence of cytoplasmic metabolism. Irrespective of the length of the dextrin, the rates of transport at a submicromolar concentration were similar for the maltodextrins when the rate was calculated per glucosyl residue, suggesting a novel mode for substrate translocation. Strains lacking MalQ and maltose transacetylase were tested for their ability to accumulate maltose. At 1.8 nM external maltose, the ratio of internal to external maltose concentration under equilibrium conditions reached 106 to 1 but declined at higher external maltose concentrations. The maximal internal level of maltose at increasing external maltose concentrations was around 100 mM. A strain lacking malQ, malP, and malZ as well as glycogen synthesis and in which maltodextrins are not chemically altered could be induced by external maltose as well as by all other maltodextrins, demonstrating the role of transport per se for induction.


Sign in / Sign up

Export Citation Format

Share Document