scholarly journals Supramolecular polymers with reversed viscosity/temperature profile for application in motor oils

2021 ◽  
Vol 17 ◽  
pp. 105-114
Author(s):  
Jan-Erik Ostwaldt ◽  
Christoph Hirschhäuser ◽  
Stefan K Maier ◽  
Carsten Schmuck ◽  
Jochen Niemeyer

We report novel supramolecular polymers, which possess a reversed viscosity/temperature profile. To this end, we developed a series of ditopic monomers featuring two self-complementary binding sites, either the guanidiniocarbonyl pyrrole carboxylic acid (GCP) or the aminopyridine carbonyl pyrrole carboxylic acid (ACP). At low temperatures, small cyclic structures are formed. However, at elevated temperatures, a ring–chain transformation leads to the formation of a supramolecular polymer. We demonstrate that this effect is dependent on the concentration of the solution and on the polarity of the solvent. This effect can counteract the loss of viscosity of the solvent at elevated temperatures, thus opening an application of our systems as viscosity index improvers (VIIs) in working fluids. This was tested for different motor oils and led to the identification of one compound as a promising VII.

2021 ◽  
Author(s):  
Wenxia Yin ◽  
Lingyi Meng ◽  
Tianjun Yu ◽  
Jinping Chen ◽  
Rui Hu ◽  
...  

Crystallization process of a NIR emissive supramolecular polymer formed by host–guest complexation of a distyrylanthracene derivative and cucurbiturils is described.


2021 ◽  
Author(s):  
◽  
Liliia Mavliutova

Sialic acids are an important family of monosaccharides that are typically found as terminal moieties of glycans. Aberrant sialylation has been proven to correlate with various diseases including cancer. Glycosylation analysis is complex due to high diversityof the glycan isomers and their low abundance. Antibodies and lectins are commonly used in glycan purification and enrichment. However, high cost, poor availability, and limitation in storage/testing conditions hinders their application on a broader scale. This thesis is focused on the development of alternative glycan specific receptors with their potential applications in glycomics and cell imaging. The underlying technique for producing the synthetic receptors is molecular imprinting. Highly complementary binding sites are formed by fixing pre-ordered template/functional monomer complexes into a highly crosslinked polymer matrix. Fundamental investigation of this intermolecular imprinting approach in the imprinting of glycosylated targets is reported here. The core of this study focuses on the elucidation of relative contribution of orthogonally interacting functional monomers, their structural tuning and the importance of monomer, solvent and counterion choice on the imprinting. Molecularly imprinted polymers (MIPs) are developed as particles of different sizes for glycan/glycopeptide enrichment applications or combined with fluorescent reportergroups for use as glycan imaging nanolabels. Special attention is given to the improvement of sialic acid MIP selectivities toward particular structures associated with cancer biomarkers. Development of MIPs against such complex targets includes design of linkage selective MIPs with comprehensive studies of the affinities and selectivities of the final glycan specific materials.


2017 ◽  
Vol 8 (23) ◽  
pp. 3596-3602 ◽  
Author(s):  
Yuan Wang ◽  
Cai-Li Sun ◽  
Li-Ya Niu ◽  
Li-Zhu Wu ◽  
Chen-Ho Tung ◽  
...  

We report a novel photoresponsive AA/BB supramolecular polymer comprising stiff-stilbene bridged guests and disulfide-bridged bispillar[5]arenes.


Author(s):  
Ashenafi Zeleke Melaku ◽  
Wei-Tsung Chuang ◽  
Yeong-Tarng Shieh ◽  
Chih-Wei Chiu ◽  
D. J. Lee ◽  
...  

Programmed formation of hierarchical graphene nanosheets, based on a combination of first and second exfoliations using the halogenated solvent ortho-dichlorobenzene (ODCB) and an adenine-functionalized supramolecular polymer (A-PPG), respectively, can be...


2020 ◽  
Vol 18 (20) ◽  
pp. 3858-3866 ◽  
Author(s):  
Paula Sabater ◽  
Fabiola Zapata ◽  
Adolfo Bastida ◽  
Antonio Caballero

H2PO4− anions induced the formation of a fluorescent supramolecular polymer by halogen bonding interactions in a bromoimidazolium based tripodal receptor.


2002 ◽  
Vol 723 ◽  
Author(s):  
Dolly Batra ◽  
Kenneth J. Shea

AbstractThe development of synthetic receptors that recognize nucleotide bases and their derivatives is an important area of research [1-3]. Applications are envisioned in separation science, biosensors, drug therapy and genetic engineering. Previously in this laboratory, we have developed a molecularly imprinted synthetic receptor for 9-ethyladenine (9-EA). The network polymer has an affinity for adenine and its derivatives with an average association constant (Ka) of 75,000 M–1 in CHCl3 [4]. When a 9-EA imprinted polymer was used as the chromatographic support, adenine eluted at 27 minutes using 92.5/5/0/2.5 CH3CN/H2O/CH3CO2H as the mobile phase, while cytosine, guanine and thymine derivatives all eluted close to the void volume (2.0 min). In addition, imprinted polymers have been made with complementary binding sites for cytosine and guanine [5], as well as other nucleotide base analogues [6].The extension of these results to construct robust receptors for oligonucleotides requires fundamental changes in imprinting strategies. Most importantly, since oligonucleotides are water soluble, strategies that employ EGDMA/MAA formulations in organic solvents will need to be replaced with those that do not compromise the interactions between template (the oligo) and functional monomer.Initially, the imprinting of a 2'-deoxyadenosine dimer (1) was attempted. Due to the hydrophilicity of a DNA oligomer, it was difficult to find a suitable organic solvent that would solubilize the oligomers without disrupting the template's interaction with the polymer matrix [7]. To combat the solubility problems and to insure the homogeniety of the polymerization solution, we examined various polymer formulations with organic and/or aqueous-based solvents that would dissolve the template without disrupting these key interactions.


2018 ◽  
Vol 47 (40) ◽  
pp. 14195-14203 ◽  
Author(s):  
Shota Oka ◽  
Hiroaki Ozawa ◽  
Kai Yoshikawa ◽  
Tomiki Ikeda ◽  
Masa-aki Haga

Selective extraction of semiconducting SWNT via entangled surface modification by H-bonded metallo-supramolecular polymer was achieved.


2010 ◽  
Vol 6 ◽  
pp. 869-875 ◽  
Author(s):  
Thomas Pinault ◽  
Bruno Andrioletti ◽  
Laurent Bouteiller

Supramolecular polymers are linear chains of low molar mass monomers held together by reversible and directional non-covalent interactions, which can form gels or highly viscous solutions if the self-assembled chains are sufficiently long and rigid. The viscosity of these solutions can be controlled by adding monofunctional compounds, which interact with the chain extremities: chain stoppers. We have synthesized new substituted ureas and thioureas and tested them as chain stoppers for a bis-urea based supramolecular polymer. In particular, the bis-thiourea analogue of the bis-urea monomer is shown not to form a supramolecular polymer, but a good chain stopper, because it is a strong hydrogen bond donor and a weak acceptor. Moreover, all substituted ureas tested reduce the viscosity of the supramolecular polymer solutions, but the best chain stopper is obtained when two hydrogen bond acceptors are placed in the same relative position as for the monomer and when no hydrogen bond donor is present.


2019 ◽  
Author(s):  
Piero Gasparotto ◽  
Davide Bochicchio ◽  
Michele Ceriotti ◽  
Giovanni M. Pavan

A central paradigm of self-assembly is to create ordered structures starting from molecular<br>monomers that spontaneously recognize and interact with each other via noncovalent interactions.<br>In the recent years, great efforts have been directed toward reaching the perfection in the<br>design of a variety of supramolecular polymers and materials with different architectures. The<br>resulting structures are often thought of as ideally perfect, defect-free supramolecular fibers,<br>micelles, vesicles, etc., having an intrinsic dynamic character, which are typically studied at the<br>level of statistical ensembles to assess their average properties. However, molecular simulations<br>recently demonstrated that local defects that may be present or may form in these assemblies, and which are poorly captured by conventional approaches, are key to controlling their dynamic<br>behavior and properties. The study of these defects poses considerable challenges, as the<br>flexible/dynamic nature of these soft systems makes it difficult to identify what effectively constitutes<br>a defect, and to characterize its stability and evolution. Here, we demonstrate the power<br>of unsupervised machine learning techniques to systematically identify and compare defects in<br>supramolecular polymer variants in different conditions, using as a benchmark 5°A-resolution<br>coarse-grained molecular simulations of a family of supramolecular polymers. We shot that this<br>approach allows a complete data-driven characterization of the internal structure and dynamics<br>of these complex assemblies and of the dynamic pathways for defects formation and resorption.<br>This provides a useful, generally applicable approach to unambiguously identify defects in<br>these dynamic self-assembled materials and to classify them based on their structure, stability<br>and dynamics.<br>


2019 ◽  
Author(s):  
Piero Gasparotto ◽  
Davide Bochicchio ◽  
Michele Ceriotti ◽  
Giovanni M. Pavan

A central paradigm of self-assembly is to create ordered structures starting from molecular monomers that spontaneously recognize and interact with each other via noncovalent interactions. In the recent years, great efforts have been directed toward reaching the perfection in the design of a variety of supramolecular polymers and materials with different architectures. The resulting structures are often thought of as ideally perfect, defect-free supramolecular fibers, micelles, vesicles, etc., having an intrinsic dynamic character, which are typically studied at the level of statistical ensembles to assess their average properties. However, high-resolution molecular simulations recently demonstrated that local defects that may be present or may form in these assemblies, and which are poorly captured by conventional approaches, are key to controlling their dynamic behavior and properties. The study of these defects poses considerable challenges, as the flexible/dynamic nature of these soft systems makes it difficult to identify what effectively constitutes a defect, and to characterize its stability and evolution. Here, we demonstrate the power of unsupervised machine learning techniques to systematically identify and compare defects in supramolecular polymer variants in different conditions, using as a benchmark high-resolution molecular simulations of a family of supramolecular polymers. We shot that this approach allows a complete data-driven characterization of the internal structure and dynamics of these complex assemblies and of the dynamic pathways for defects formation and resorption. This provides a useful, generally applicable approach to unambiguously identify defects in these dynamic self-assembled materials and to classify them based on their structure, stability and dynamics.


Sign in / Sign up

Export Citation Format

Share Document