scholarly journals Synthesis and characterization of zinc and copper oxide nanoparticles and their antibacterial activity

2020 ◽  
Author(s):  
Richard B Asamoah ◽  
Abu Yaya ◽  
Bismark Mensah ◽  
Pascal Nbelayim ◽  
Vitus Apalangya ◽  
...  

Inorganic nano-metal oxides can be effective alternatives to drug resistant organic antibiotics due to their broad spectrum antimicrobial activity against pathogenic and mutagenic gram-negative and positive bacteria.  In this study, zinc and copper oxides (ZnO and CuO) were synthesized using a facile wet chemical method. The oxide nanoparticles were characterized using X-ray diffraction (XRD), UV-Vis spectrometer (UV-Vis), Fourier Transformed Infra-red spectrometer and Transmission electron microscopy (TEM). The antibacterial activities of the nanoparticles were investigated against e. coli and s. aureus using the disk diffusion and microdilution tests. The XRD analysis revealed that both zinc and copper oxide nanoparticles were purely crystalline. The TEM micrographs showed that copper oxide nanoparticles assumed a nanorod shape of average length of 100 nm.  Whiles zinc oxide nanoparticles were spherical of average diameter of 15 nm. The FTIR results showed that the nanoparticles were free of impurities and organic surfactants. The optical band gaps of CuO and ZnO according to UV-Vis analysis were respectively 2.63 eV and 3.22 eV. According to the antibacteria tests, the minimum inhibition concentration (MIC) of CuO against e. coli and s. aureus were correspondingly 1mg/ml and 0.25 mg/ml whiles it was 0.1mg/ml for ZnO against s. aureus but ZnO produced no inhibition against e. coli. With the microdilution test, both nanoparticles exhibited activity against both bacteria species at all varying concentrations. CuO had an antibacteria efficiency of 80 to 97% and 85 to 99% for e. coli and s. aureus respectively. The efficiency of ZnO were 20 to 90% and 50 to 89% for e. coli and s. aureus accordingly. The results concluded that CuO had higher antibacteria activity as compared to ZnO.

2021 ◽  
Author(s):  
CI Chemistry International

A green, cost-effective and eco-friendly method for the synthesis of copper oxide nanoparticles (CuO NPs) using Bougainvillea flower aqueous extract at room temperature was reported. The synthesized CuO NPs were characterized by UV–visible spectroscopy, fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) tecniques. The synthesized particles were highly stable, spherical in shape with an average diameter of 12±4 nm. The CuO NPs were explored for their antifungal activity against Aspergillus niger and responses revealed that CuO NPs are highly efficient to inhibit the fungal growth and zone of inhibition were comparable with standard drug. The green route for the synthesis of CuO NPs is suggested in view of promising antifungal activity.


2020 ◽  
Vol 10 (03) ◽  
pp. 378-382
Author(s):  
Jenan Hussien Taha ◽  
Nada Khudair Abbas ◽  
Azhar A. F. Al-Attraqchi

In this article, a simple new technique for the green synthesis of copper oxide nanoparticles (CuO NPs) using peroxidases oxidoreductases (POX) enzyme extracted from fig leaves for antifungal and antibacterial activities has been reported. Subsequently, a comprehensive investigation of the structural, optical, and morphological properties of the synthesized CuO NPs was elucidated, using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Electrodiagnostic (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analysis techniques. Specifically, the resultant nanoparticles are spherical with a diameter ranging from 28–68. CuO NPs were further tested for their antifungal activity against Candida and Aspergillus species, while the antibacterial activity was screened in contradiction of pathogenic bacterial strains namely gram-positive Staphylococcus aureus and gram-negative Asinobacterial species. The present study reveals a convenient use of POX fig leaves extract as fuel, for the well-organized synthesis of CuO NPs via green synthesis technique to acquire considerably active antifungal and antibacterial materials.


2017 ◽  
Vol 33 (8) ◽  
pp. 889-896 ◽  
Author(s):  
Abdullah A. Alswat ◽  
Mansor Bin Ahmad ◽  
Mohd Zobir Hussein ◽  
Nor Azowa Ibrahim ◽  
Tawfik A. Saleh

2021 ◽  
Vol 12 (2) ◽  
pp. 1397-1404

Biosynthesized nanoparticles have a huge perspective. It is an environment-friendly, cost-efficient, reproducible, and energy-efficient method compared to physical or chemical synthesis. In the present study, biosynthesis of copper oxide nanoparticles (CuONP) was done using Purpureocillium lilacinum. Characterization of synthesized CuONP was done by using UV–vis spectroscopy, TEM, and XRD analysis. UV–vis gave characteristic SPR peak for CuONP at 360 nm. TEM image reveals that the morphology of biosynthesized CuONP was spherical, and their size range between 4.03nm to 8.83nm. The XRD analysis confirmed the crystalline nature of CuO with a size range of 6-26.6nm. Further comparative study of photocatalytic degradation of navy blue and safranin using CuONP was done. CuO-NPs exhibited potential catalytic activity in navy blue (57.5 %) and safranin (63 %), respectively.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 312 ◽  
Author(s):  
Joy Sarkar ◽  
Nilanjan Chakraborty ◽  
Arindam Chatterjee ◽  
Avisek Bhattacharjee ◽  
Disha Dasgupta ◽  
...  

Biosynthesis of copper oxide nanoparticles (CuONPs) in a cost-effective and eco-friendly way has gained its importance. CuONPs has been prepared from copper sulfate by using Adiantum lunulatum whole plant extract. CuONPs have been characterized by X-ray diffraction, Fourier transform infrared spectroscopic, transmission electron microscope, etc. Mono-disperse, spherical, pure, and highly stable CuONPs have formed with an average diameter of 6.5 ± 1.5 nm. Biosynthesized CuONPs at different concentrations were applied to seeds of Lens culinaris. Physiological characteristics were investigated in the germinated seeds. Roots obtained from the seeds treated with 0.025 mgmL−1 concentration of CuONPs showed highest activity of different defence enzymes and total phenolics. However, at higher concentration it becomes close to control. It showed gradual increase of antioxidative enzymes, in accordance with the increasing dose of CuONPs. Likewise, lipid peroxidation and proline content gradually increased with the increasing concentration. Reactive oxygen species and nitric oxide generation was also altered due to CuONPs treatment indicating stress signal transduction. Finally, this study provides a new approach of the production of valuable CuONPs, is a unique, economical, and handy tool for large scale saleable production which can also be used as a potent plant defence booster instead of other commercial uses.


2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Na Yeon Kim

AbstractStructural evolution of copper oxide nanoparticles is examined, especially with respect to Ostwald ripening under electron beam irradiation. Dissolution of the smaller particles into the larger one was clearly observed at the atomic scale using advanced transmission electron microscope.


Sign in / Sign up

Export Citation Format

Share Document