scholarly journals Scale-up and Energy Consumption of Bubble Stripper for Residual Methanol Removal from Crude Biodiesel Fuel

2017 ◽  
Vol 96 (10) ◽  
pp. 430-435
Author(s):  
Kaede TEJIMA ◽  
Masao YUKUMOTO ◽  
Tsuneo YAMANE
Author(s):  
Naoto KOBAYASHI ◽  
Kaede TEJIMA ◽  
Masao YUKUMOTO ◽  
Tsuneo YAMANE

2019 ◽  
Vol 23 (Suppl. 5) ◽  
pp. 1779-1788
Author(s):  
Radivoje Pesic ◽  
Aleksnadar Davinic

Rapid growth in the energy consumption has conditioned the need for discovering the alternative energy resources which would be adapted to the existing engine constructions and which would satisfy the additional criteria related to the renewability, ecology, and reliability of use. The experimental research are conducted according to the (European Stationary Cycle - Directive 1999/96/EC) 13-mode. Using biodiesel fuel average thermal efficiency is kept at the level of the application of conventional diesel fuel, average emission of CO is reduced by 13.6%, average emission of NO is increased by x 27.6%, average emission of hydrocarbon is increased by 59.4%, and average particles emission is reduced by 43.2%.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 558
Author(s):  
Jacinthe Thibodeau ◽  
Noémie Benoit ◽  
Véronique Perreault ◽  
Laurent Bazinet

Electrodialysis with ultrafiltration membrane (EDUF) was selected to separate a herring milt hydrolysate (HMH) in a scale-up and long-term study for the recovery of bioactive peptides. The scale-up was performed to maximise peptide recovery by placing a total membrane area of 0.08 m2 for each anionic and cationic compartment. Twelve consecutive runs were carried out, for a total of 69 h, with minimal salt solution cleaning in between experiments. The final peptide migration rate showed that cationic peptides had a higher average migration rate (5.2 ± 0.8 g/m2·h), compared to anionic peptides (4.7 ± 1.1 g/m2·h). Migration was also selective according to peptide identifications and molecular mass distribution where only small molecular weights were found (<1000 Da) in both recovery compartments. The areal system resistance slightly decreased during each run and the averaged values were stable in between experiments since they were all found in the 95% confidence interval. In addition, total relative energy consumption was quite consistent with an average value of 39.95 ± 6.47 Wh/g all along the 12 consecutive runs. Finally, according to membrane characterization, there was no visual fouling on the different membranes present in the EDUF cell after 69 h of treatment. This may be due to the salt cleaning in between experiments which allowed removal of peptides from the membranes, thus allowing recovering initial system working parameters at the beginning of each run. The entire process was revealed to be very consistent and repeatable in terms of peptide migration, global system resistance, and energy consumption. To the best of our knowledge, this is the first time such EDUF conditions (membrane surface, duration, and minimal salt cleaning between experiments) are being tested on a complex hydrolysate.


Author(s):  
Katia Tannous ◽  
Aline Gallo De Mitri ◽  
Vadim Mizonov

Decease of natural resources and increase of price of fossil fuels at growing energy consumption, toughening of ecological standards and necessity of the increase of the level of energetics diversification motivates mankind to more wide usage of renewable energy resources including the solid fuel of biological origin. The potential of biofuel usage is rather considerable because the energy equivalent of the biomass harvest on the land exceeds the worldwide energy consumption several times as much. The biomass application as a renewable fuel is already a reality worldwide with the development of policies and technologies that turn viable the transformation of biomass into energy. The aims of this work is to present a literature experimental review on the studies concerning to the use of fluidized beds taking into account their design and scale-up. Initially, the usual solid particle terminology and some important biomass properties are presented. A brief description of conversion technologies and the fluidization phenomena are introduced, followed by an explanation of the different experimental techniques. The characteristic velocities (initial, apparent, of segregation, and complete) are discussed based on different biomass properties, as well as a number of empirical correlations for these velocities are described. Finally, some considerations are made about characteristic bed porosities (apparent and complete) and bed expansion. Based on the literature analysis, an improvement has been done on the understanding of the biomass fluidization phenomena, however, further research is needed to comprehend the effect of biomass characteristics on the bed operational parameters, besides more accurate and general correlations must be developed to improve these technologies. For citation: Tannous K., De Mitri A.G., Mizonov V. Experimental study of fluid dynamic behavior of biomassparticles in fluidized beds: a review. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 4-14


2013 ◽  
Vol 10 (3) ◽  
pp. 426-433
Author(s):  
Kunofiwa Tsaurai

This study looked into causality relationship between energy consumption and economic growth in Zimbabwe using time series data spanning from 1980 to 2011. Four views explaining the causality relationship between energy consumption and economic growth include the growth hypothesis, conservation hypothesis, feedback hypothesis and the neutrality hypothesis. Whilst the growth hypothesis argues that energy consumption promotes economic growth, conservation hypothesis says that it is in fact economic growth that drives energy consumption. The feedback hypothesis argues that both energy consumption and economic growth promote each other whilst according to the neutrality hypothesis, no causality relationship exist between the two variables either in the short or long run. Using the bi-variate causality test framework, this study failed to establish any direct causality relationship between energy consumption and economic growth. However, the results imply the existence of an indirect bi-directional causality relationship between the two variables. The study therefore recommends Zimbabwe authorities not only to scale up investment into energy generation capacity improvement infrastructure but also address indirect factors like employment, human capital development, financial market development, and government consumption, among others in order to boost sustainable economic growth.


Author(s):  
Maneesh Kumar Mediboyina ◽  
Nicholas M. Holden ◽  
Simon O’Neill ◽  
Kai Routledge ◽  
Bill Morrissey ◽  
...  

AbstractThis study focusses on the design and scale-up of industrial lactic acid production by fermentation of dairy cheese whey permeate based on standard methodological parameters. The aim was to address the shortcomings of standard scale-up methodologies and provide a framework for fermenter scale-up that enables the accurate estimation of energy consumption by suitable selection of turbine and speed for industrial deployment. Moreover, life cycle assessment (LCA) was carried out to identify the potential impacts and possibilities to reduce the operation associated emissions at an early stage. The findings showed that a 3000 times scale-up strategy assuming constant geometric dimensions and specific energy consumption (P/Vw) resulted in lower impeller speed and energy demand. The Rushton turbine blade (RTB) and LightninA315 four-blade hydrofoil (LA315) were found to have the highest and lowest torque output, respectively, at a similar P/Vw of 2.8 kWm−3, with agitation speeds of 1.33 and 2.5 s−1, respectively. RTB demonstrating lower shear damage towards cells (up to 1.33 s−1) was selected because it permits high torque, low-power and acceptable turbulence. The LCA results showed a strong relation between the number of impellers installed and associated emissions suggesting a trade-off between mixing performance and environmental impacts.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6420-6430
Author(s):  
Zhen-Hua Su ◽  
Shu-Jie Fan ◽  
Yu Zhang ◽  
Chao Tian ◽  
Chen Gong ◽  
...  

Industrial-scale testing was performed for fine screen reject recovery technology with a mixed office waste (MOW) pulping line. Results showed that the recovery system removed macrostickies and dirt specks with an efficiency of 95.7% to 98.3% and 51.5% to 76.8%, respectively. These results were not affected by the running consistency (0.26% to 1.44%). The recovery system improved the physical strength of the pulp. Relative to untreated rejects, the tensile index increased 5.1% to 15.2%, the tear index increased 6.6% to 11.4%, and the breaking index increased 6.6% to 25.7%. Running consistency had no obvious effects on tensile strength and tear strength, but bursting strength increased with increasing running consistency (%). The volume energy consumption (y) increased with increasing running consistency (x), and a linear relationship of y = 0.73x + 4.2191 (R² = 0.9466) was observed. The specific energy consumption (y) of the pulp decreased with increasing running consistency (x), and the relationship could be expressed as y = 499.67x-0.906 (R² = 0.9959).


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Sign in / Sign up

Export Citation Format

Share Document