SAR ATR based on disentangled representation learning generative adversarial networks and support vector machine

2020 ◽  
Vol 28 (3) ◽  
pp. 727-735
Author(s):  
徐 英 XU Ying ◽  
谷 雨 GU Yu ◽  
彭冬亮 PENG Dong-liang ◽  
刘 俊 LIU Jun
2018 ◽  
Vol 8 (12) ◽  
pp. 2351 ◽  
Author(s):  
Caidan Zhao ◽  
Mingxian Shi ◽  
Zhibiao Cai ◽  
Caiyun Chen

Nowadays, it is more and more important to deal with the potential security issues of internet-of-things (IoT). Indeed, using the physical layer features of IoT wireless signals to achieve individual identity authentication is an effective way to enhance the security of IoT. However, traditional classifiers need to know all the categories in advance to get the recognition models. Realistically, it is difficult to collect all types of samples, which will result in some mistakes that the unknown target class may be decided as a known one. Consequently, this paper constructs an improving open-categorical classification model based on the generative adversarial networks (OCC-GAN) to solve the above problems. Here, we have modified the loss function of the generative model G and the discriminative model D. Compared to the traditional GAN model which can generate the fake sample overlapping with the real samples, our proposed G model generates the fake samples as negative samples which are evenly surrounding with the real samples, while the D model learns to distinguish between real samples and fake samples. Besides, we add auxiliary training not only to gain a better recognition result but also to improve the efficiency of the model. Furthermore, Our proposed model is verified through experimental study. Compared to other common methods, such as one-class support vector machine (OC-SVM) and one-versus-rest support vector machine (OvR-SVM), the OCC-GAN model has a better performance. The recognition rate of the OCC-GAN model can reach more than 90% with a recall rate of 97% by the data of the IoT module.


2018 ◽  
Vol 10 (7) ◽  
pp. 1123 ◽  
Author(s):  
Yuhang Zhang ◽  
Hao Sun ◽  
Jiawei Zuo ◽  
Hongqi Wang ◽  
Guangluan Xu ◽  
...  

Aircraft type recognition plays an important role in remote sensing image interpretation. Traditional methods suffer from bad generalization performance, while deep learning methods require large amounts of data with type labels, which are quite expensive and time-consuming to obtain. To overcome the aforementioned problems, in this paper, we propose an aircraft type recognition framework based on conditional generative adversarial networks (GANs). First, we design a new method to precisely detect aircrafts’ keypoints, which are used to generate aircraft masks and locate the positions of the aircrafts. Second, a conditional GAN with a region of interest (ROI)-weighted loss function is trained on unlabeled aircraft images and their corresponding masks. Third, an ROI feature extraction method is carefully designed to extract multi-scale features from the GAN in the regions of aircrafts. After that, a linear support vector machine (SVM) classifier is adopted to classify each sample using their features. Benefiting from the GAN, we can learn features which are strong enough to represent aircrafts based on a large unlabeled dataset. Additionally, the ROI-weighted loss function and the ROI feature extraction method make the features more related to the aircrafts rather than the background, which improves the quality of features and increases the recognition accuracy significantly. Thorough experiments were conducted on a challenging dataset, and the results prove the effectiveness of the proposed aircraft type recognition framework.


2021 ◽  
Vol 7 (2) ◽  
pp. 755-758
Author(s):  
Daniel Wulff ◽  
Mohamad Mehdi ◽  
Floris Ernst ◽  
Jannis Hagenah

Abstract Data augmentation is a common method to make deep learning assessible on limited data sets. However, classical image augmentation methods result in highly unrealistic images on ultrasound data. Another approach is to utilize learning-based augmentation methods, e.g. based on variational autoencoders or generative adversarial networks. However, a large amount of data is necessary to train these models, which is typically not available in scenarios where data augmentation is needed. One solution for this problem could be a transfer of augmentation models between different medical imaging data sets. In this work, we present a qualitative study of the cross data set generalization performance of different learning-based augmentation methods for ultrasound image data. We could show that knowledge transfer is possible in ultrasound image augmentation and that the augmentation partially results in semantically meaningful transfers of structures, e.g. vessels, across domains.


Author(s):  
Arash Shilandari ◽  
Hossein Marvi ◽  
Hossein Khosravi

Nowadays, and with the mechanization of life, speech processing has become so crucial for the interaction between humans and machines. Deep neural networks require a database with enough data for training. The more features are extracted from the speech signal, the more samples are needed to train these networks. Adequate training of these networks can be ensured when there is access to sufficient and varied data in each class. If there is not enough data; it is possible to use data augmentation methods to obtain a database with enough samples. One of the obstacles to developing speech emotion recognition systems is the Data sparsity problem in each class for neural network training. The current study has focused on making a cycle generative adversarial network for data augmentation in a system for speech emotion recognition. For each of the five emotions employed, an adversarial generating network is designed to generate data that is very similar to the main data in that class, as well as differentiate the emotions of the other classes. These networks are taught in an adversarial way to produce feature vectors like each class in the space of the main feature, and then they add to the training sets existing in the database to train the classifier network. Instead of using the common cross-entropy error to train generative adversarial networks and to remove the vanishing gradient problem, Wasserstein Divergence has been used to produce high-quality artificial samples. The suggested network has been tested to be applied for speech emotion recognition using EMODB as training, testing, and evaluating sets, and the quality of artificial data evaluated using two Support Vector Machine (SVM) and Deep Neural Network (DNN) classifiers. Moreover, it has been revealed that extracting and reproducing high-level features from acoustic features, speech emotion recognition with separating five primary emotions has been done with acceptable accuracy.


Author(s):  
P. J. Soto ◽  
J. D. Bermudez ◽  
P. N. Happ ◽  
R. Q. Feitosa

<p><strong>Abstract.</strong> This work aims at investigating unsupervised and semi-supervised representation learning methods based on generative adversarial networks for remote sensing scene classification. The work introduces a novel approach, which consists in a semi-supervised extension of a prior unsupervised method, known as MARTA-GAN. The proposed approach was compared experimentally with two baselines upon two public datasets, <i>UC-MERCED</i> and <i>NWPU-RESISC45</i>. The experiments assessed the performance of each approach under different amounts of labeled data. The impact of fine-tuning was also investigated. The proposed method delivered in our analysis the best overall accuracy under scarce labeled samples, both in terms of absolute value and in terms of variability across multiple runs.</p>


2021 ◽  
Author(s):  
Alessio Mascolini ◽  
Dario Cardamone ◽  
Francesco Ponzio ◽  
Santa Di Cataldo ◽  
Elisa Ficarra

Abstract Computer-aided analysis of biological images typically requires extensive training on large-scale annotated datasets, which is not viable in many situations. In this paper, we present GAN-DL, a Discriminator Learner based on the StyleGAN2 architecture, which we employ for self-supervised image representation learning in the case of fluorescent biological images. We show that Wasserstein Generative Adversarial Networks combined with linear Support Vector Machines enable high-throughput compound screening based on raw images. We demonstrate this by classifying active and inactive compounds tested for the inhibition of SARS-CoV-2 infection in VERO and HRCE cell lines. In contrast to previous methods, our deep learning-based approach does not require any annotation besides the one that is normally collected during the sample preparation process. We test our technique on the RxRx19a Sars-CoV-2 image collection. The dataset consists of fluorescent images that were generated to assess the ability of regulatory-approved or late-stage clinical trials compounds to modulate the in vitro infection from SARS-CoV-2 in both VERO and HRCE cell lines. We show that our technique can be exploited not only for classification tasks but also to effectively derive a dose-response curve for the tested treatments, in a self-supervised manner. Lastly, we demonstrate its generalization capabilities by successfully addressing a zero-shot learning task, consisting of the categorization of four different cell types of the RxRx1 fluorescent images collection.


Sign in / Sign up

Export Citation Format

Share Document