scholarly journals FORMULATION OF POLY HERBAL NOVEL DRUG DELIVERY SYSTEM FOR ANTI RHEUMATOID ARTHRITIS

YMER Digital ◽  
2022 ◽  
Vol 21 (01) ◽  
pp. 41-55
Author(s):  
L Tamilselvi ◽  
◽  
R Senthamarai ◽  
A.M. Ismail ◽  
T Shri Vijaya Kirubha ◽  
...  

Novel herbal drug delivery system opens new vistas for delivery of herbal drugs at right place, at right concentration, for right period of time and also gives scientific angle to verify the standardization of herbal drug. Herbal Transdermal patches can develop valuable assessment and drug safety by additional site specific the way and temporal position in the body’s imperative to reduce the number and size of doses required to achieve the objective of systemic medication during topical application to the intact skin surface. Rheumatoid Arthritis (RA) is a chronic, progressive autoimmune disease of unknown cause. It is characterized by persistent inflammation that primarily affects the peripheral joints. In the present study, herbal transdermal patch was developed by using ethanolic extract of leaves of Cardiospermum halicacabum and rhizomes of Drynaria quercifolia that had already been widely used for the treatment of arthritis in conventional dosage forms. Evaluation of the developed patch for the effectiveness against RA was done by in vitro methods in terms of inhibition of albumin denaturation, measurement of Interleukin-6 cytokines by Enzyme-Linked Immuno Assay (ELISA). IC-50 value was determined from albumin denaturation inhibition assay. The herbal patch significantly and dosedependently inhibited Interleukin–6 cytokines. The present study revealed that the formulated polyherbal Transdermal patch will be the better drug of choice for the treatment of Rheumatoid Arthritis as compared to the conventional dosage forms.

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1341-1349
Author(s):  
Yap Vi Lien ◽  
Mogana R ◽  
Sasikala Chinnappan ◽  
Ashok Kumar Janakiraman ◽  
Tan Lee Fang

Hyperpigmentation is one of the most commonly seen skin disorders which is not a concerning health issues but it may affect the psychological aspect of a person. Hyperpigmentation is caused by the presence of excess melanin, which is the brown pigment of the skin. Products that aimed to reduce the pigmentations act by inhibiting the tyrosinase enzyme, which is the rate-limiting enzyme in the synthesis of melanin. There are many products that are currently available in the market that aims to reduce pigmentation of the skin. These products are conventionally formulated into different dosage forms such as cream, lotion and emulgel, which gains popularity due to its convenience on application. However, due to the drawbacks that these dosage forms possess such as poor stability and absorption, new formulations are presented which incorporate novel drug delivery system into the conventional dosage forms. These novel drug delivery systems are, inter alia, liposome, niosomes and microsphere. They carry benefits of controlled drug delivery, enhanced skin penetration and reduce drug toxicity as compared to the conventional dosage form, which resulted in the increase in marketed product diving into this pathway. This present article will discuss the various dosage forms, drug delivery system, its advantages, disadvantages and marketed product for pigmentation control.


Author(s):  
Syeda Ayesha Fathima ◽  
Shireen Begum ◽  
Syeda Saniya Fatima

Conventional dosage forms which require multidose therapy have many problems and complications. Design of a conventional dosage forms should be such that it delivers right amount of drug in right manner to the target site. The encouragement in development of novel drug delivery system is apart from therapeutic efficacy is its cause. Redesigning the unit and means is a difficult task and profitable task so a controlled released drug delivery system, a novel drug delivery system evolves which facilitates the release of drug at predetermined rate. Controlled drug delivery can be achieved by transdermal drug delivery system which can deliver the drug through skin to the systemic circulation at a predetermine rate over a prolonged period of time.


Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


Author(s):  
Christe Mary M ◽  
Sasikumar Swamiappan

Presently, various approaches have been exploited in the prolongation of gastric residence time which includes floating drug delivery system (FDDS), swelling and expanding systems, bio-adhesive systems, modified shape systems and high density systems. Among various methods, floating drug delivery system is considered to be a predominant method. Gastric emptying of dosage forms is an extremely varying process and ability to extend and control the emptying time is a valuable resource for the dosage forms. This FDDS is having the ability to provides a solution for this purpose. The FDDS is a bulk density system lower than the gastric fluid, so that the rest will float on the stomach contents for a prolonged period of time and allowing the drug to release slowly at a desired rate from the system and intensifies the bio-availability of the drug having narrow absorption window. The main intension of writing this review on floating drug delivery system is to study the mechanism of flotation to acheive the gastric retention and to discuss briefly about the background of FDDS, advantages and disadvantages, application of FDDS and factors affecting the gastric retension time.


Author(s):  
Lakshmi Usha Ayalasomayajula ◽  
M. Kusuma Kumari ◽  
Radha Rani Earle

In the recent days about 75% of the drugs taken orally are does not show the desired therapeutic effect. Oral conventional dosage forms have several disadvantages such as poor bioavailability due to hepatic first pass metabolism and tendency to produce rapid blood level spikes (Both high and low). Thus, rapid drug levels in the plasma leads to a need of high and/or frequent dosing, which can be both uneconomical and inconvenient. To overcome such disadvantages transdermal drug delivery system was developed. TDDS is such a delivery system which has been explored extensively over the last two decades, with therapeutic success. Transdermal drug delivery systems (TDDS) are the drug delivery systems which involves transportation of drug to epidermal and dermal tissues of the skin for local therapeutic action while major fraction of the drug is transported into the systemic blood circulation. Topical administration of therapeutic agents offers vast advantages over conventional oral and invasive methods of drug delivery. Some of the advantages of transdermal drug delivery include limitation of hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady state plasma level concentration of the drug. This study includes a brief overview of TDDS, its advantages over conventional dosage forms, drug delivery routes across human skin, permeation enhancers, and classification, formulation, methods of preparation and evaluation of transdermal patches.


Author(s):  
RIZKA KHOIRUNNISA GUNTINA ◽  
IYAN SOPYAN ◽  
ADE ZUHROTUN

A drug delivery system is a system in which a drug is released from a pharmaceutical dosage form to achieve the desired pharmacological effect. The system consists of conventional and new drug delivery systems. In the new drug delivery system, polymers are used as a matrix. The aim of this article is to find out and understand the formulation and evaluation of natural ingredients that have anticancer activity with different dosage forms and the basis for developing these dosages. Journal searches in this review came from primary data sources on the internet. Journal searches were carried out using a search engine such as Google Scholar, PubMed, and ScienceDirect. In recent years, natural products, such as extract, fraction, and isolate, are getting attention to help treat cancer. Because of their low solubility and bioavailability, the effectiveness tends to be lower than synthetic drugs. Therefore, a dosage form with a new drug delivery system was made to overcome the problem. The dosage forms commonly made are patch, suspension, powder, and emulsion with a new drug delivery system. To ensure the product that has been made met the requirements, they need to be evaluated with various methods like In vitro Study, morphology study, particle size study, and others. Cancer treatment using the natural product can be delivered through several dosage forms like patch, suspension, powder, and emulsion, with specific formulation and manufacturing methods based on several considerations such as natural ingredients properties, dosage form selection, excipient properties, and the purpose of the formulation. Dosage forms that has been made are then evaluated using several evaluation methods.


Author(s):  
MANDAR J BHANDWALKAR ◽  
PRASAD S DUBAL ◽  
AKASH K.TUPE ◽  
SUPRIYA N MANDRUPKAR

In recent years, gastroretentive drug delivery system (GRDDS) has gained researcher’s interest in the field of oral drug delivery. Various GRDDS approaches can be utilized to retain the dosage forms in the stomach and to release the drug slowly for an extended period of time. GRDDS can be used to prolong the residence time of delivery system in the stomach. This results in targeting of drug release at a specific site for the systemic or local effects. GRDDS can be used to overcome challenges associated with conventional oral dosage forms and to release the drug at a specific absorption site to improve bioavailability of particular drug substance. The challenges include fast gastric emptying of the dosage form which results in the poor bioavailability of the drug. Prolongation of the retention of drugs in stomach those having low solubility at high intestinal pH improves the solubility of drugs. GRDDS has proved to be effective in systemic actions as well as in local actions to treat gastric or duodenal ulcers. Local activity in the upper part of the small intestine can be obtained by improving the residence time of delivery system in the stomach. The system is useful for drugs which are unstable in the intestine or having a low solubility/permeability in the small intestine. Various GRDDS approaches include high density (sinking) systems, low-density (floating systems), mucoadhesive, expandable, unfoldable, superporous hydrogel systems, and magnetic systems.


Sign in / Sign up

Export Citation Format

Share Document