scholarly journals Nonconventional Diode Clamped Multilevel Inverter with Reduced Number of Switches

2020 ◽  
Vol 16 (2) ◽  
pp. 1-12
Author(s):  
Adala AbdAli ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The conventional multilevel inverter (MLI) is divided into three types: diode clamped MLI, cascade H Bridge MLI and flying capacitor MLI. The main disadvantage of these types is the higher required number of components when the number of the levels increases and this results in more switching losses, system higher cost, more complex of control circuit as well as less accuracy. The work in this paper proposes two topologies of nonconventional diode clamping MLI three phase nine levels and eleven levels. The first proposed topology has ten switches and six diodes per phase while the second topology has nine switches and four diodes per phase. The pulse width modulation (PWM) control method is used as a control to gate switches. THD of the two proposed topologies are analyzed and calculated according different values of Modulation index (where the power loss and efficiency are obtained and plotted.

Author(s):  
N. Susheela ◽  
P. Satish Kumar

<p>The popularity of multilevel inverters have increasing over the years in various applications without use of a transformer and has many benefits. This work presents the performance and comparative analysis of single phase diode clamped multilevel inverter and a hybrid inverter with reduced number of components. As there are some drawbacks of diode clamped multilevel inverter such as requiring higher number of components, PWM control method is complex and capacitor voltage balancing problem, an implementation of hybrid inverter that requires fewer components and less carrier signals when compared to conventional multilevel inverters is discussed. The performance of single phase diode clamped multilevel inverter and hybrid multilevel inverter for seven, nine and eleven levels is performed using phase disposition, alternate phase opposition disposition sinusoidal pulse width modulation techniques. Both the multilevel inverter are implemented for the above mentioned multicarrier based Pulse Width Modulation methods for R and R-L loads.  The total harmonic distortion is evaluated at various modulation indices. The analysis of the multilevel inverters is done by simulation in matlab / simulink environment.</p>


Author(s):  
Nabil Farah ◽  
Jurifa Bt. Mat Lazi ◽  
MHN Talib

<p>Multilevel Inverter (MLI) has attracted a great attention by different researchers and industries due to its capability in handling high power application and minimizing the harmonics contents in the output. This study propose three different topologies of MLI (5-level) which are Cascaded H-Bridge Multilevel Inverter (CHMLI) ,Diode Clamped Multilevel Inverter and Flying Capacitor Multilevel Inverter (FCMLI) .These three topologies have been modelled in MATLAB/SIMULINK and compared in terms of THD and number of components used. Sinusoidal Pulse Width Modulation is utilized to control both of the topologies with same DC source. The results showed that ,CHMLI is superior compared to DCMLI and FCMLI in which the CHMLI produce 26.29% THD while DCMLI and FCMLI produce 29.14% and 33.53% respectively .Moreover less components and switching losses is obtained when using the CHMLI.</p>


2021 ◽  
Author(s):  
Baharuddin Ismail ◽  
Muzamir Isa ◽  
M. Z. Aikhsan ◽  
M. N. K. H. Rohani ◽  
C. L. Wooi ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 75
Author(s):  
Manyuan Ye ◽  
Qiwen Wei ◽  
Wei Ren ◽  
Guizhi Song

The three unit nine-level inverter can output more voltage levels with fewer h-bridge units, while having better output waveform quality. However, in the conventional hybrid frequency modulation strategy, only one low-voltage unit adopts pulse width modulation (PWM), which causes the problem of switching loss and uneven heat distribution between the two low-voltage units. At the same time, the output power of the conventional modulation strategy is unbalanced. Aiming to resolve the above problems, a modified hybrid modulation strategy and a power balance control method under the strategy is proposed in this paper. The modulation strategy achieves output power balance between the three units and an even distribution of switching losses between the two low voltage units while maintaining the same output power quality. Simulation and experimental results verify the feasibility of the modulation strategy.


Author(s):  
Nunsavath Susheela ◽  
Satish Kumar

<p>Multilevel inverters (MLI) are becoming more popular over the years for medium and high power applications because of its significant merits over two level inverters. This paper presents an implementation of multicarrier based sinusoidal pulse width modulation technique for three phase seven level diode clamped multilevel inverter.  This topology is operated under phase opposition disposition pulse width modulation technique. The performance of three phase seven level diode clamped inverter is analyzed for induction motor (IM) load.  Simulation is performed using MATLAB/SIMULINK. Experimental results are presented to validate the effectiveness of the operation of the diode clamped multilevel inverter using field programmable gate array.</p>


Sign in / Sign up

Export Citation Format

Share Document