scholarly journals Flow Past a Fixed and Freely Vibrating Drilling Riser System with Auxiliaries in Laminar Flow

Author(s):  
Fatin Alias ◽  
Mohd Hairil Mohd ◽  
Mohd Azlan Musa ◽  
Erwan Hafizi Kasiman ◽  
Mohd Asamudin A Rahman

Drilling risers used in oil and gas operations are subjected to external loads such as wave and current. One of the phenomena that arise from the external loads is the Vortex-Induced Vibration (VIV), which affects the performance of the riser due to excessive vibration from the vortex shedding. A significant factor influencing the VIV is the design of the drilling riser and its auxiliary lines. Until now, the optimum geometrical size and gap between the auxiliary and the main riser are still very scarcely studied. In this paper, the main objective is to study the effects of the gap ratio (G/D) on the vortex shedding phenomenon on a fixed and freely vibrating riser. The riser system was modelled with a main drilling riser and six auxiliary lines with a constant diameter ratio (d/D) of 0.45 and gap ratio (G/D) = 0 to 2.0 in the laminar flow regime with Reynold Number, Re = 200. The simulations were conducted for Single Degree of Freedom (SDOF) using Computational Fluid Dynamics (CFD) software, Altair AcuSolve. It was found that the freely vibrating riser experienced higher lift and drag forces as compared to the fixed riser due to the synchronization (lock-in) of the shedding vibration and the natural frequencies. The lock-in phenomenon is normally observed on the drilling riser at different current directions. The forces are reduced when G/D is higher. The vortex shedding was significantly reduced for auxiliaries between 0.3 to 1.4. It is confirmed that by modifying the interaction of the vortices in the wake region with auxiliary lines, the hydrodynamic forces will be decreased. Finally, this fundamental study could potentially be used in the designing stage of an optimum drilling riser system by considering significant governing factors.

2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


CFD letters ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 51-68
Author(s):  
Nurul Azihan Ramli ◽  
Azlin Mohd Azmi ◽  
Ahmad Hussein Abdul Hamid ◽  
Zainal Abidin Kamarul Baharin ◽  
Tongming Zhou

Flow over bluff bodies produces vortex shedding in their wake regions, leading to structural failure from the flow-induced forces. In this study, a passive flow control method was explored to suppress the vortex shedding from a circular cylinder that causes many problems in engineering applications. Perforated shrouds were used to control the vortex shedding of a circular cylinder at Reynolds number, Re = 200. The shrouds were of non-uniform and uniform holes with 67% porosity. The spacing gap ratio between the shroud and the cylinder was set at 1.2, 1.5, 2, and 2.2. The analysis was conducted using ANSYS Fluent using a viscous laminar model. The outcomes of the simulation of the base case were validated with existing studies. The drag coefficient, Cd, lift coefficient, Cl and the Strouhal number, St, as well as vorticity contours, velocity contours, and pressure contours were examined. Vortex shedding behind the shrouded cylinders was observed to be suppressed and delayed farther downstream with increasing gap ratio. The effect was significant for spacing ratio greater than 2.0. The effect of hole types: uniform and non-uniform holes, was also effective at these spacing ratios for the chosen Reynolds number of 200. Specifically, a spacing ratio of 1.2 enhanced further the vortex intensity and should be avoided.


1988 ◽  
Vol 1988 (163) ◽  
pp. 39-47
Author(s):  
Ichiro Tanaka ◽  
Matao Takagi ◽  
Masami Hikino ◽  
Tsuyoshi Kato ◽  
Hirotoshi Yanagi

Author(s):  
Saqib Jamshed ◽  
Amit Dhiman

Abstract The current research focuses on the laminar flow through permeable side-by-side bars of a square cross-section in a channel-confined domain. Vorticity generation on the leeward sides of the permeable bodies further necessitates the study for a better understanding of underlying physics. Reynolds number Re and Darcy number Da are varied from 5 to 150 and 10-6 to 10-2, respectively, at transverse gap ratios s/d=2.5-10. In the perspective of periodic unsteady flow, critical Re for the onset of vortex shedding is analyzed. Streamlines, vorticity, pressure coefficient distribution, and velocity profiles are discussed to identify the wake patterns. In lower permeability level, vortex-shedding from the permeable square cylinders is observed either in synchronized anti-phase mode or a single large vortex street with a synchronized in-phase pattern in the near wake. A steady-state wake pattern symmetric and flocked towards the centerline is observed for all s/d at a higher permeability level regardless of Re. Wake patterns are not altered for Da=10-6-10-3; instead, prompt extermination of the two vortex streets downstream is observed at Da=10-3 as compared to Da=10-6. The impact of s/d, Re, and permeability on the drag is examined. A jump in the flow characteristics and drag forces is noticed at higher Re for the mid-range Da remarkably at lower s/d. For the extent of high permeability, the drag coefficient asymptotically gets closer to zero.


2021 ◽  
Vol 18 (4) ◽  
pp. 45-52
Author(s):  
Wenhua Huang ◽  
Yan Huang ◽  
Juan Ren ◽  
Jinglong Jiang ◽  
Marischa Elveny

One of the challenges facing drilling companies in the completion and production of oil and gas wells is sand production from the formation. The ability to predict sand production in the wells of a reservoir, to decide to use different methods of control is considered a fundamental issue. Therefore, analysis and study of sand production conditions and selecting the optimal drilling route before drilling wells are significant issues that are less considered. According to the findings of this study, due to the sand grains adhesion issue, saturation increase has caused to increase in the intermolecular uptake, and therefore moisture has been decreased. It leads to reduction in the sand production rate. Pressure increase has a direct relationship with the sand production rate due to increased induced drag forces. Moreover, phenol–formaldehyde resins provided an acceptable measurement as there are no significant changes in porosity and permeability.


1984 ◽  
Vol 106 (2) ◽  
pp. 214-221 ◽  
Author(s):  
F. Rajabi ◽  
M. F. Zedan ◽  
A. Mangiavacchi

An analytical model to predict the dynamic response of a riser in regular waves or in current to vortex shedding-induced lift forces is described. The riser is treated as a continuous beam under tension. A modal superposition scheme is used to solve the linearized equation of motion in the frequency domain. The excitation lift force is represented by a harmonic function with a frequency equal to the dominant vortex shedding frequency. Empirical correlations are used to determine the lift coefficients and shedding frequencies along the riser. Lift amplification is considered at or near the “lock-in” conditions. The fluid resistance to riser oscillations is represented by a Morison’s equation-type expression.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 90 ◽  
Author(s):  
Vasily A. Kirsch ◽  
Alexandr V. Bildyukevich ◽  
Stepan D. Bazhenov

A numerical simulation of the laminar flow field and convection–diffusion mass transfer in a regular system of parallel fully absorbing fibers for the range of Reynolds numbers up to Re = 300 is performed. An isolated row of equidistant circular fibers arranged normally to the external flow is considered as the simplest model for a hollow-fiber membrane contactor. The drag forces acting on the fibers with dependence on Re and on the ratio of the fiber diameter to the distance between the fiber axes, as well as the fiber Sherwood number versus Re and the Schmidt number, Sc, are calculated. A nonlinear regression formula is proposed for calculating the fiber drag force versus Re in a wide range of the interfiber distances. It is shown that the Natanson formula for the fiber Sherwood number as a function of the fiber drag force, Re, and Sc, which was originally derived in the limit of high Peclet numbers, is applicable for small and intermediate Reynolds numbers; intermediate and large Peclet numbers, where Pe = Re × Sc; and for sparse and moderately dense rows of fibers.


Sign in / Sign up

Export Citation Format

Share Document