Experimental Investigation to Establish Correlation Between Specific Film Thickness and Vibration Signals in Spur Gear System

2014 ◽  
Vol 38 (9) ◽  
pp. 1005-1012
Author(s):  
Jong Sik Kim ◽  
M. Amarnath ◽  
Sang Kwon Lee
2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yasir Hassan Ali ◽  
Roslan Abd Rahman ◽  
Raja Ishak Raja Hamzah

The thickness of an oil film lubricant can contribute to less gear tooth wear and surface failure. The purpose of this research is to use artificial neural network (ANN) computational modelling to correlate spur gear data from acoustic emissions, lubricant temperature, and specific film thickness (λ). The approach is using an algorithm to monitor the oil film thickness and to detect which lubrication regime the gearbox is running either hydrodynamic, elastohydrodynamic, or boundary. This monitoring can aid identification of fault development. Feed-forward and recurrent Elman neural network algorithms were used to develop ANN models, which are subjected to training, testing, and validation process. The Levenberg-Marquardt back-propagation algorithm was applied to reduce errors. Log-sigmoid and Purelin were identified as suitable transfer functions for hidden and output nodes. The methods used in this paper shows accurate predictions from ANN and the feed-forward network performance is superior to the Elman neural network.


2018 ◽  
Vol 19 (3) ◽  
pp. 310 ◽  
Author(s):  
Youssef Hilali ◽  
Bouazza Braikat ◽  
Hassane Lahmam ◽  
Noureddine Damil

In this work, we propose some regularization techniques to adapt the implicit high order algorithm based on the coupling of the asymptotic numerical methods (ANM) (Cochelin et al., Méthode Asymptotique Numérique, Hermès-Lavoisier, Paris, 2007; Mottaqui et al., Comput. Methods Appl. Mech. Eng. 199 (2010) 1701–1709; Mottaqui et al., Math. Model. Nat. Phenom. 5 (2010) 16–22) and the implicit Newmark scheme for solving the non-linear problem of dynamic model of a two-stage spur gear system with backlash. The regularization technique is used to overcome the numerical difficulties of singularities existing in the considered problem as in the contact problems (Abichou et al., Comput. Methods Appl. Mech. Eng. 191 (2002) 5795–5810; Aggoune et al., J. Comput. Appl. Math. 168 (2004) 1–9). This algorithm combines a time discretization technique, a homotopy method, Taylor series expansions technique and a continuation method. The performance and effectiveness of this algorithm will be illustrated on two examples of one-stage and two-stage gears with spur teeth. The obtained results are compared with those obtained by the Newton–Raphson method coupled with the implicit Newmark scheme.


2018 ◽  
Vol 25 (6) ◽  
pp. 1210-1226 ◽  
Author(s):  
Yi Yang ◽  
Mengjuan Xu ◽  
Yang Du ◽  
Pan Zhao ◽  
Yiping Dai

Due to the complex working environment, gear systems always suffer from multiple excitations in actual engineering. This paper concerns the frequency response characteristics of a nonlinear time-varying spur gear system subjected to multi-frequency excitation. Firstly, a single degree-of-freedom gear pair model is established with consideration of the gear backlash, time-varying mesh stiffness and multiple harmonic excitations. Then, using the multiple time scales method, a comprehensive theoretical study is conducted to analyze various resonant cases including primary, parametric and combination resonances. Besides, parametric studies are accomplished to reveal the effects of the multi-frequency excitation on gear dynamics and to provide some useful references for reducing the vibration level. With the help of the fifth-order Runge–Kutta method, the numerical results are obtained to verify the validity of the analytical solutions and to emphasize the significances of the multi-frequency excitation. In addition, a comparison is performed between the numerical results and the published experimental results to validate the proposed gear model. Results show that the presence of the multi-frequency excitation will introduce the interaction between different harmonic excitations, which significantly affects the nonlinear vibration characteristics of a spur gear system. The proposed gear model with multi-frequency excitation could be more reliable and universal than that with single-frequency excitation. In addition, the results of parametric study could provide some suggestions to designers and researchers attempting to obtain desirable dynamic behaviors of a gear system subjected to multi-frequency excitation.


Author(s):  
T. K. Shing ◽  
Lung-Wen Tsai ◽  
P. S. Krishnaprasad

Abstract A new model which accounts for both backlash and friction effects is proposed for the dynamics of a spur gear system. The model estimates average friction torque and uses it to replace the instantaneous friction torque to simplify the dynamical equations of motion. Two simulations, free oscillation and constant load operation, are performed to illustrate the effects of backlash and friction on gear dynamics. The results are compared with that of a previously established model which does not account for the friction. Finally, the effect of adding a damper on the driving shaft is also studied. This model is judged to be more realistic for real time control of electronmechanical systems to reduce gear noise and to achieve high precision.


2018 ◽  
Vol 120 ◽  
pp. 45-54 ◽  
Author(s):  
A. Guerine ◽  
A. El Hami ◽  
L. Walha ◽  
T. Fakhfakh ◽  
M. Haddar

Sign in / Sign up

Export Citation Format

Share Document