scholarly journals Longitudinal-transverse bending of a multilayer bar made of a physically nonlinear material

Author(s):  
Юрий Владимирович Немировский ◽  
Сергей Владимирович Тихонов

В работе рассматриваются многослойные бетонные стержни постоянного поперечного сечения. Закон деформирования каждого слоя стержня принят в виде аппроксимации полиномом третьего порядка. Предполагается, что на защемленный стержень действуют квазистатические продольные и поперечные нагрузки и сила тяжести. Рассматриваемые задачи решаются методом Бубнова-Галеркина. The paper considers multilayer concrete rods of constant cross-section. The deformation law for each layer of the bar is adopted as an approximation by a third-order polynomial. It is assumed that quasi-static longitudinal and transverse loads and gravity act on the restrained rod. The problems under consideration are solved by the Bubnov-Galerkin method.

Author(s):  
Юрий Владимирович Немировский ◽  
Сергей Владимирович Тихонов

В работе рассматриваются многослойные бетонные стержни постоянного поперечного сечения армированные стальной арматурой. Предполагается, что в стержне имеет место одноосное напряженное состояние. На примере армирования сталями марок А240, А400, А800 показано влияние степени армирования на несущую способность стержня. Рассматриваются случаи армирования как только одного из слоев стержня, так и армирование всех слоев одновременно. The paper deals with multilayer concrete rods of constant cross-section reinforced with steel reinforcement. It is assumed that there is a uniaxial stress state in the bar. Using the example of reinforcement with steels of grades A240, A400, A800, the influence of the degree of reinforcement on the bearing capacity of the bar is shown. Cases of reinforcement of both only one of the layers of the bar and reinforcement of all layers at the same time are considered


2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


1965 ◽  
Vol 87 (4) ◽  
pp. 355-360 ◽  
Author(s):  
J. C. Chato

The general problem of condensation in a variable acceleration field was investigated analytically. The case of the linear variation, which occurs in a constant cross section, rotating thermosyphon, was treated in detail. The results show that the condensate thickness and Nusselt numbers approach limiting values as the radial distance increases. The effects of the temperature differential and the Prandtl number are similar to those in other condensation problems; i.e., the heat transfer increases slightly with increasing temperature differential if Pr > 1, but it decreases with increasing temperature differential if Pr ≪ 1.


1969 ◽  
Vol 37 (1) ◽  
pp. 51-80 ◽  
Author(s):  
W. D. Baines ◽  
J. S. Turner

This paper considers the effect of continuous convection from small sources of buoyancy on the properties of the environment when the region of interest is bounded. The main assumptions are that the entrainment into the turbulent buoyant region is at a rate proportional to the local mean upward velocity, and that the buoyant elements spread out at the top of the region and become part of the non-turbulent environment at that level. Asymptotic solutions, valid at large times, are obtained for the cases of plumes from point and line sources and also periodically released thermals. These all have the properties that the environment is stably stratified, with the density profile fixed in shape, changing at a uniform rate in time at all levels, and everywhere descending (with ascending buoyant elements).The analysis is carried out in detail for the point source in an environment of constant cross-section. Laboratory experiments have been conducted for this case, and these verify the major predictions of the theory. It is then shown how the method can be extended to include more realistic starting conditions for the convection, and a general shape of bounded environment. Finally, the model is applied quantitatively to a variety of problems in engineering, the atmosphere and the ocean, and the limitations on its use are discussed.


2013 ◽  
Vol 694-697 ◽  
pp. 767-770
Author(s):  
Jing Shu Wang ◽  
Ming Chi Feng

As the thermal deformation significantly impacts the accuracy of precision positioning stage, it is necessary to realize the thermal error. The thermal deformation of the positioning stage is simulated by the finite element analysis. The relationship between the temperature variation and thermal error is fitted third-order polynomial function whose parameters are determined by genetic algorithm neural network (GANN). The operators of the GANN are optimized through a parametric study. The results show that the model can describe the relationship between the temperature and thermal deformation well.


2003 ◽  
Vol 95 (2) ◽  
pp. 571-576 ◽  
Author(s):  
Yongquan Tang ◽  
Martin J. Turner ◽  
Johnny S. Yem ◽  
A. Barry Baker

Pneumotachograph require frequent calibration. Constant-flow methods allow polynomial calibration curves to be derived but are time consuming. The iterative syringe stroke technique is moderately efficient but results in discontinuous conductance arrays. This study investigated the derivation of first-, second-, and third-order polynomial calibration curves from 6 to 50 strokes of a calibration syringe. We used multiple linear regression to derive first-, second-, and third-order polynomial coefficients from two sets of 6–50 syringe strokes. In part A, peak flows did not exceed the specified linear range of the pneumotachograph, whereas flows in part B peaked at 160% of the maximum linear range. Conductance arrays were derived from the same data sets by using a published algorithm. Volume errors of the calibration strokes and of separate sets of 70 validation strokes ( part A) and 140 validation strokes ( part B) were calculated by using the polynomials and conductance arrays. Second- and third-order polynomials derived from 10 calibration strokes achieved volume variability equal to or better than conductance arrays derived from 50 strokes. We found that evaluation of conductance arrays using the calibration syringe strokes yields falsely low volume variances. We conclude that accurate polynomial curves can be derived from as few as 10 syringe strokes, and the new polynomial calibration method is substantially more time efficient than previously published conductance methods.


1975 ◽  
Vol 53 (20) ◽  
pp. 2315-2320 ◽  
Author(s):  
G. Papini ◽  
S. -R. Valluri

The radiative corrections of second and third order for the process of photoproduction of gravitons in Coulomb and magnetic dipole fields have been calculated.All divergences have been removed either by charge renormalization or regularization. No approximations have been made in the calculation of the second order cross section. In the third order calculation only the extreme relativistic approximation is given. The forms of the effective Lagrangian, corresponding to the low energy approximations have been determined.


1937 ◽  
Vol 4 (2) ◽  
pp. A49-A52
Author(s):  
Miklós Hetényi

Abstract This paper calls attention to a new method of dealing with deflections of beams, the cross sections of which vary by steps. It is shown that the effect of this variation on the shape of the deflection curve can be represented by a properly chosen force system acting on a beam of uniform cross section. There is no approximation involved in this substitution, whereby the original problem is reduced to one of computing deflections of beams of constant cross section.


Sign in / Sign up

Export Citation Format

Share Document