Explanation of the Galaxy Spectrum Redshift Phenomenon ----The New Discovery on How Light Works

Keyword(s):  
2021 ◽  
Author(s):  
Physicist Zheng shengming

based on the new discovery of moving photon do create force and a formula of describe this new discovery: Applying this discovery from the micro world to the macro world, show that from atomic world to the galaxy world, the nature has been working obeys this law, and their actions can all be described by this formula. The Coulomb law and Newton law of university gravitation are only calculation formula in the specific condition status.


2021 ◽  
Author(s):  
Physicist Zheng shengming

based on the new discovery of moving photon do create force and a formula of describe this new discovery: Applying this discovery from the micro world to the macro world, show that from atomic world to the galaxy world, the nature has been working obeys this law, and their actions can all be described by this formula. The Coulomb law and Newton law of university gravitation are only calculation formula in the specific condition status.


2009 ◽  
Vol 5 (H15) ◽  
pp. 186-187
Author(s):  
Francoise Combes

AbstractIn the recent years, more and more sophisticated models have been proposed for the gas distribution and kinematics in the Milky Way, taking into account the main bar, but also the possible nuclear bar, with the same or different pattern-speed. I review the success and problems encountered by the models, in particular in view of the new discovery of a symmetrical far-side counterpart of the 3 kpc arm. The inner part, dominated by the bar, and the outer parts, dominated by the spiral arms, can be observed from a virtual solar position, and the errors coming from kinematical distances are evaluated. The appearance of four arms could be due to a deprojection bias.


Author(s):  
Amanda G. Wilber ◽  
Melanie Johnston-Hollitt ◽  
Stefan W. Duchesne ◽  
Cyril Tasse ◽  
Hiroki Akamatsu ◽  
...  

Abstract Early science observations from the Australian Square Kilometre Array Pathfinder (ASKAP) have revealed clear signals of diffuse radio emission associated with two clusters detected by the South Pole Telescope via their Sunyaev Zel’dovich signal: SPT CLJ0553-3342 (MACS J0553.4-3342) and SPT CLJ0638-5358 (Abell S0592) are both high-mass lensing clusters that have undergone major mergers. To create science-fidelity images of the galaxy clusters, we performed direction-dependent (DD) calibration and imaging on these ASKAP early science observations using state-of-the-art software killMS and DDFacet. Here, we present our DD calibrated ASKAP radio images of both clusters showing unambiguous giant radio halos with largest linear scales of ${\sim}1$ Mpc. The halo in MACS J0553.4-3342 was previously detected with Giant Metrewave Radio Telescope observations at 323 MHz but appears more extended in our ASKAP image. Although there is a shock detected in the thermal X-ray emission of this cluster, we find that the particle number density in the shocked region is too low to allow for the generation of a radio shock. The radio halo in Abell S0592 is a new discovery, and the Southwest border of the halo coincides with a shock detected in X-rays. We discuss the origins of these halos considering both the hadronic and turbulent re-acceleration models and sources of seed electrons. This work gives a positive indication of the potential of ASKAP’s Evolutionary Map of the Universe survey in detecting intracluster medium radio sources.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


1967 ◽  
Vol 31 ◽  
pp. 313-317 ◽  
Author(s):  
C. C. Lin ◽  
F. H. Shu

Density waves in the nature of those proposed by B. Lindblad are described by detailed mathematical analysis of collective modes in a disk-like stellar system. The treatment is centered around a hypothesis of quasi-stationary spiral structure. We examine (a) the mechanism for the maintenance of this spiral pattern, and (b) its consequences on the observable features of the galaxy.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


Author(s):  
Jiang Xishan

This paper reports the growth step pattern and morphology at equilibrium and growth states of (Mn,Fe)S single crystal on the wall of micro-voids in ZG25 cast steel by using scanning electron microscope. Seldom report was presented on the growth morphology and steppattern of (Mn,Fe)S single crystal.Fig.1 shows the front half of the polyhedron of(Mn,Fe)S single crystal,its central area being the square crystal plane,the two pairs of hexagons symmetrically located in the high and low, the left and right with a certain, angle to the square crystal plane.According to the symmetrical relationship of crystal, it was defined that the (Mn,Fe)S single crystal at equilibrium state is tetrakaidecahedron consisted of eight hexagonal crystal planes and six square crystal planes. The macroscopic symmetry elements of the tetrakaidecahedron correpond to Oh—n3m symmetry class of fcc structure,in which the hexagonal crystal planes are the { 111 } crystal planes group,square crystal plaits are the { 100 } crystal planes group. This new discovery of the (Mn,Fe)S single crystal provides a typical example of the point group of Oh—n3m.


Sign in / Sign up

Export Citation Format

Share Document