scholarly journals Covalent functionalization of graphene oxide with flame retardant and its effect on thermal stability and flame retardancy of epoxy composites

2014 ◽  
Vol 11 ◽  
pp. 895-904 ◽  
Author(s):  
W. Hu ◽  
Lei Song ◽  
L. Wang ◽  
Y. Hu ◽  
P. Zhang
10.6036/10327 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 98-103
Author(s):  
XIAN WANG ◽  
JINLONG ZHUO ◽  
TIANQING XING ◽  
Xingran Wang

In order to reduce flammability, smoke release and enhance thermal stability of epoxy resin (EP), iron powder is mixed with graphene oxide/ epoxy resin (GO/EP) composite by mechanical blending. The combustion performance of composite material is investigated through limiting oxygen index (LOI), Underwriters Laboratory (UL)-94 test, and cone calorimeter test (CCT). Thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) and scanning electron microscope (SEM) are also used to explore the mechanism of flame retardancy and smoke suppression. Results show that, with the addition of 0.5% mass fraction of GO and the corresponding iron powder combination (EP3 sample), the LOI value can achieve 32.5% while reaching the UL-94 V0 rating. Compare with EP0, the peaks of heat release rate, smoke production rate, and smoke factor values of EP3 are decreased by 42%, 60%, and 50%, respectively. The char and TG-FTIR data of EP3 reveal that it has a more compact structure, good thermal stability, and produce fewer toxic gases and smoke. Reduction of GO could inhibit the degradation of EP, and iron catalyzes the formation of carbonaceous char on the surface. Thus, the thermal stability and flame retardancy of EP are improved significantly. This study provides a suitable way to prepare graphene/EP composites that contain iron catalyst and can be extended to the industrial manufacture of flame retardant polymer composites. Keywords: iron powder; epoxy resin; graphene oxide; flame retardant; thermal stability


Cellulose ◽  
2021 ◽  
Vol 28 (6) ◽  
pp. 3789-3805
Author(s):  
Ling Sun ◽  
Huixin Wang ◽  
Wennan Li ◽  
Jiaojiao Zhang ◽  
Zheng Zhang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 380 ◽  
Author(s):  
Wei Zhao ◽  
Yongxiang Li ◽  
Qiushi Li ◽  
Yiliang Wang ◽  
Gong Wang

The flame retardant modification of epoxy (EP) is of great signification for aerospace, automotive, marine, and energy industries. In this study, a series of EP composites containing different variations of phosphorus-containing polysulfone (with a phosphorus content of approximately 1.25 wt %) were obtained. The obtained EP/polysulfone composites had a high glass transition temperature (Tg) and high flame retardancy. The influence of phosphorus-containing compounds (ArPN2, ArPO2, ArOPN2 and ArOPO2) on the thermal properties and flame retardancy of EP/polysulfone composites was investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), a UL-94 vertical burning test, and cone calorimeter tests. The phosphorus-containing polysulfone enhanced the thermal stability of EP. The more stable porous char layer, less flammable gases, and a lower apparent activation energy at a high degree of conversion demonstrated the high gas inhibition effect of phosphorus-containing compounds. Moreover, the gas inhibition effect of polysulfone with a P–C bond was more efficient than the polysulfone with a P–O–C bond. The potential for optimizing flame retardancy while maintaining a high Tg is highlighted in this study. The flame-retardant EP/polysulfone composites with high thermal stability broaden the application field of epoxy.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1062 ◽  
Author(s):  
Junlei Chen ◽  
Jihui Wang ◽  
Aiqing Ni ◽  
Hongda Chen ◽  
Penglong Shen

In this work, a novel phosphorous–nitrogen based charring agent named poly(1,3-diaminopropane-1,3,5-triazine-o-bicyclic pentaerythritol phosphate) (PDTBP) was synthesized and used to improve the flame retardancy of high-density polyethylene (HDPE) together with ammonium polyphosphate (APP). The results of Fourier transform infrared spectroscopy (FTIR) and 13C solid-state nuclear magnetic resonance (NMR) showed that PDTBP was successfully synthesized. Compared with the traditional intumescent flame retardant (IFR) system contained APP and pentaerythritol (PER), the novel IFR system (APP/PDTBP, weight ratio of 2:1) could significantly promote the flame retardancy, water resistance, and thermal stability of HDPE. The HDPE/APP/PDTBP composites (PE3) could achieve a UL-94 V-0 rating with LOI value of 30.8%, and had a lower migration percentage (2.2%). However, the HDPE/APP/PER composites (PE5) had the highest migration percentage (4.7%), lower LOI value of 23.9%, and could only achieve a UL-94 V-1 rating. Besides, the peak of heat release rate (PHRR), total heat release (THR), and fire hazard value of PE3 were markedly decreased compared to PE5. PE3 had higher tensile strength and flexural strength of 16.27 ± 0.42 MPa and 32.03 ± 0.59 MPa, respectively. Furthermore, the possible flame-retardant mechanism of the APP/PDTBP IFR system indicated that compact and continuous intumescent char layer would be formed during burning, thus inhibiting the degradation of substrate material and improving the thermal stability of HDPE.


RSC Advances ◽  
2015 ◽  
Vol 5 (121) ◽  
pp. 100049-100053 ◽  
Author(s):  
Rong-Chuan Zhuang ◽  
Juan Yang ◽  
De-Yi Wang ◽  
Ya-Xi Huang

Lamellar dodecyl-ammonium dihydrogen phosphate flame retardant was synthesized in one-pot. Its incorporation into epoxy leads to the simultaneous enhancement of flame retardancy and impact toughness for the resulting epoxy composites.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document