Taxonomic and Functional Responses of Sediment Bacterial Community to Anthropogenic Disturbances in the Yarlung Tsangpo River on the Tibetan Plateau

Author(s):  
X. Wang ◽  
◽  
P. F. Wang ◽  
C. Wang ◽  
J. Chen ◽  
...  
2020 ◽  
Author(s):  
Yao Jiang ◽  
Zongxue Xu

<p>Understanding the dynamics of basin-scale water budgets over the Tibetan Plateau (TP) is significant for hydrology and water resource management in the southern and eastern Asia. However, a detailed water balance analysis is limited by the lack of adequate hydro-climatic observations in this region. In this study, we investigate the spatiotemporal variation of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q etc.) in the Yarlung Tsangpo River basin (YTB) of southeast TP during the period of 1975-2015 through using multi-source datasets (e.g. insitu observation, remote sensing data products, reanalysis outputs and model simulations etc.). The change trend of water budget components and vegetation parameters was analyzed in the YTB on interannual scale. The results indicated that the detailed water budgets are different from upstream to downstream YTB due to different temperature, vegetation cover and evapotranspiration, which are mainly affected by different climate conditions. In the whole basin, precipitation that are mainly during June to October was the major contributor to the runoff. The P and Q were found to show a slight but insignificant decrease in most regions of YTB since the late 1990s, which showed positive relationships with the weakening Indian summer monsoon. While the ET showed an insignificant increase across most of the YTB, especially in the middle basin. The runoff coefficient (Q/P) exhibited an indistinctively decreasing trend which may be, to some extent, due to the overlap effects of ET increase and snow and glacier changes. The obtained results offer insights into understanding the evolution mechanism of hydrological processes in such a data-sparse region under changing environment.</p>


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 181
Author(s):  
Yuchen Wang ◽  
Tong Zhao ◽  
Zhifang Xu ◽  
Huiguo Sun ◽  
Jiangyi Zhang

Germanium/Silicon (Ge/Si) ratio is a common proxy for primary mineral dissolution and secondary clay formation yet could be affected by hydrothermal and anthropogenic activities. To decipher the main controls of riverine Ge/Si ratios and evaluate the validity of the Ge/Si ratio as a weathering proxy in the Tibetan Plateau, a detailed study was presented on Ge/Si ratios in the Yarlung Tsangpo River, southern Tibetan Plateau. River water and hydrothermal water were collected across different climatic and tectonic zones, with altitudes ranging from 800 m to 5000 m. The correlations between TDS (total dissolved solids) and the Ge/Si ratio and Si and Ge concentrations of river water, combined with the spatial and temporal variations of the Ge/Si ratio, indicate that the contribution of hydrothermal water significantly affects the Ge/Si ratio of the Yarlung Tsangpo River water, especially in the upper and middle reaches. Based on the mass balance calculation, a significant amount of Ge (11–88%) has been lost during its transportation from hydrothermal water to the river system; these could result from the incorporation of Ge on/into clays, iron hydroxide, and sulfate mineral. In comparison, due to the hydrothermal input, the average Ge/Si ratio in the Yarlung Tsangpo River is a magnitude order higher than the majority of rivers over the world. Therefore, evaluation of the contribution of hydrothermal sources should be considered when using the Ge/Si ratio to trace silicate weathering in rivers around the Tibetan Plateau.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1230
Author(s):  
Fumei Xin ◽  
Jiming Liu ◽  
Chen Chang ◽  
Yuting Wang ◽  
Liming Jia

The ecosystems across the Tibetan Plateau are changing rapidly in response to climate change, which poses unprecedented challenges for the control and mitigation of desertification on the Tibetan Plateau. Sophora moorcroftiana (Benth.) Baker is a drought-resistant plant species that has great potential to be used for desertification and soil degradation control on the Tibetan Plateau. In this study, using a maximum entropy (MaxEnt) niche model, we characterized the habitat distribution of S. moorcroftiana on the Tibetan Plateau under both current and future climate scenarios. To construct a robust model, 242 population occurrence records, gathered from our field surveys, historical data records, and a literature review, were used to calibrate the MaxEnt model. Our results showed that, under current environmental conditions, the habitat of S. moorcroftiana was concentrated in regions along the Yarlung Tsangpo, Lancang, and Jinsha rivers on the Tibetan Plateau. Elevation, isothermality, and minimal air temperature of the coldest month played a dominant role in determining the habitat distribution of S. moorcroftiana. Under future climate scenarios, the increased air temperature was likely to benefit the expansion of S. moorcroftiana over the short term, but, in the long run, continued warming may restrict the growth of S. moorcroftiana and lead to a contraction in its habitat. Importantly, the Yarlung Tsangpo River valley was found to be the core habitat of S. moorcroftiana, and this habitat moved westwards along the Yarlung Tsangpo River under future climate scenarios, but did not detach from it. This finding suggests that, with the current pace of climate change, an increase in efforts to protect and cultivate S. moorcroftiana is necessary and critical to control desertification on the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document