AN EARLY COST ESTIMATION MODEL FOR HYDROELECTRIC POWER PLANT PROJECTS USING NEURAL NETWORKS AND MULTIPLE REGRESSION ANALYSIS

2015 ◽  
Vol 21 (4) ◽  
pp. 470-477 ◽  
Author(s):  
Murat Gunduz ◽  
Haci Bayram Sahin

Energy is increasingly becoming more important in today’s world, whereas energy sources are drastically decreasing. One of the most valuable energy sources is hydro energy. Because of limited energy sources and excessive energy usage, cost of energy is rising. Among the electricity generation units, hydroelectric power plants are very important, since they are renewable energy sources and they have no fuel cost. To decide whether a hydroelectric power plant investment is feasible or not, project cost and amount of electricity generation of the investment should be precisely estimated. In this paper, fifty four hydroelectric power plant projects are analysed by using multiple regression and artificial neural network tools. As a result, two cost estimation models have been developed to estimate the hydroelectric power plant project cost in early stages of the project.

Author(s):  
M. I. Balzannikov ◽  
E. G. Vyshkin

The paper presents the analysis of different types of impact the hydroelectric power plants’ reservoirs could make on the environment. Hydroelectric power plants (HPP) produce ecologically safe energy and correspond to the modern striving for sustainability because they are operated on renewable energy sources. At the same time they can provoke various potential dangers for the environment. The objective of the investigation is to demonstrate the interrelation between the type and structure of a hydroelectric power plant and the way its reservoir may impact on the nature surrounding the plant. These effects may be direct and indirect, positive and negative and vary from insignificant that can be easily fixed to those that are irreversible and catastrophic. The latter should be taken into account during the design of HPP.


Forecasting ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 410-428
Author(s):  
Emanuele Ogliari ◽  
Alfredo Nespoli ◽  
Marco Mussetta ◽  
Silvia Pretto ◽  
Andrea Zimbardo ◽  
...  

The increasing penetration of non-programmable renewable energy sources (RES) is enforcing the need for accurate power production forecasts. In the category of hydroelectric plants, Run of the River (RoR) plants belong to the class of non-programmable RES. Data-driven models are nowadays the most widely adopted methodologies in hydropower forecast. Among all, the Artificial Neural Network (ANN) proved to be highly successful in production forecast. Widely adopted and equally important for hydropower generation forecast is the HYdrological Predictions for the Environment (HYPE), a semi-distributed hydrological Rainfall–Runoff model. A novel hybrid method, providing HYPE sub-basins flow computation as input to an ANN, is here introduced and tested both with and without the adoption of a decomposition approach. In the former case, two ANNs are trained to forecast the trend and the residual of the production, respectively, to be then summed up to the previously extracted seasonality component and get the power forecast. These results have been compared to those obtained from the adoption of a ANN with rainfalls in input, again with and without decomposition approach. The methods have been assessed by forecasting the Run-of-the-River hydroelectric power plant energy for the year 2017. Besides, the forecasts of 15 power plants output have been fairly compared in order to identify the most accurate forecasting technique. The here proposed hybrid method (HYPE and ANN) has shown to be the most accurate in all the considered study cases.


Author(s):  
Washington Orlando Irrazabal Bohorquez ◽  
Joa˜o Roberto Barbosa

In the Ecuadorian electrical market, several sugar plants, which significantly participate in the local electricity market, are producing their own energy and commercializing the surplus to the electrical market. This study evaluates the integral use of the sugar cane bagasse for productive process on a Cogeneration Power Plant in an Ecuadorian Sugar Company [8]. The electrical generation based on biomass requires a great initial investment. The cost is around US$ 800/kW installed, twice the US$ 400/kW initial investment of conventional thermoelectric power plant and almost equal to the US$ 1,000/kW initial cost of hydroelectric power plant [5]. A thermoeconomic study was carried out on the production of electricity and the sales of the surplus of 27 MWe average produced by the power plant. An operational analysis was made using instantaneous values from the estimated curves of demand and generation of electricity. From the results, it was concluded that the generated electricity costs are 0.0443 US$/kWh, while the costs of the electricity from Fossil Power Plants (burning fuel oil, diesel fuel and natural gas) are in the range 0.03–0.15 US$/kWh and from Hydroelectric Plants are about 0.02 US$/kWh. Cogeneration power plants burning sugar cane bagasse could contribute to the mitigation of climatic change. This specific case study shows the reduction of the prospective emissions of greenhouse gases, around 55,188 ton of CO2 equivalent yearly for this cogeneration power plant.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Baraka Kichonge ◽  
Iddi S. N. Mkilaha ◽  
Geoffrey R. John ◽  
Sameer Hameer

The study analyzes the economics of renewable energy sources into electricity generation in Tanzania. Business as usual (BAU) scenario and renewable energy (RE) scenario which enforce a mandatory penetration of renewable energy sources shares into electricity generations were analyzed. The results show total investment cost for the BAU scenario is much lower as compared to RE scenario while operating and maintenance variable costs are higher in BAU scenario. Primary energy supply in BAU scenario is higher tied with less investment costs as compared to RE scenario. Furthermore, the share of renewable energy sources in BAU scenario is insignificant as compared to RE scenario due to mandatory penetration policy imposed. Analysis concludes that there are much higher investments costs in RE scenario accompanied with less operating and variable costs and lower primary energy supply. Sensitivity analysis carried out suggests that regardless of changes in investments cost of coal and CCGT power plants, the penetration of renewable energy technologies was still insignificant. Notwithstanding the weaknesses of renewable energy technologies in terms of the associated higher investments costs, an interesting result is that it is possible to meet future electricity demand based on domestic resources including renewables.


Author(s):  
Ottentri Ottentri ◽  
Hendi Matalata

The need for electrical energy is a necessity that can not be ditawar–tawar anymore for a life worthy of every person in this day. Generally, remote rural areas located in mountainous areas have a large potential of water energy, so that the hydroelectric power plant is one of the energy sources that can be developed. Jambi is an area covered with Batanghari River flows. This research aims to know how the work process of Microhydro power plant.  Components of the essential components of miniature microhydro power plants are reservoirs, rapid pipes, turbines, generators where these components are not loose bias, interrelated to one another. Round of Tubin obtained from the experiment is 400 rpm with water discharge 0.0016 m3/s. The maximum voltage generated by the generator is 18 volts. Voltage generated from the generator to charging the Batrai used inverter of 13.1 volts. The load will remain on even though the main energy source is the generator stop in the same, because the energy of the second is Batrai.


Author(s):  
Mikhail Balzannikov

The article describes run-of-the-river hydroelectric power plants. The authors specify the importance of performing technical and economic calculations in justifying the large-sized units of the water-supplying channel of a run-of-the-river hydroelectric power plant: turbine pits and suction (discharge) pipes. The study shows that the amount of construction work and the total cost of building a hydroelectric power plant depend on the size of these water supply units. The research objective is to analyze the validity of establishing the main dimensions of the suction pipes for modern technical and economic conditions. The researchers use the discounted income method. The calculations are performed for a hydroelectric power plant with an elbow suction pipe. The analysis of how the operating conditions of a hydroelectric power plant influence the savings of construction resources is carried out. The analysis shows that saving construction resources by reducing the length of the suction pipe is justified if the hydroelectric power plamt is designed to work only at peak power loads. For hydroelectric power plants operating at semi-peak or base power loads, the additional construction costs would be appropriate if leading to the decrease in pressure loss and to the increase in electricity generation.


2021 ◽  
Vol 58 (3) ◽  
pp. 47-65
Author(s):  
L. Petrichenko ◽  
R. Petrichenko ◽  
A. Sauhats ◽  
K. Baltputnis ◽  
Z. Broka

Abstract The electricity sector in Europe and in the world is undergoing rapid and profound changes. There is a sharp increase in the capacity of renewable energy sources, coal and nuclear power plants are being closed and new technologies are being introduced. Especially rapid changes are taking place in the energy systems of the Baltic States. Under these conditions, there is an emerging need for new planning tools particularly for the analysis of the power system properties in a long-term perspective. The main contribution of this article lies in the formulation and solution of optimization problems that arise when planning the development of power systems in the Baltic States. To solve this problem, it is necessary to use models of various power plants and make a number of assumptions, the justification of which requires the following actions: to briefly review the current situation of the production and demand of energy in the Baltic power systems; to conduct an overview of the Baltic interconnections and their development; to make forecasts of energy prices, water inflow, energy production and demand; to set and solve the problems of optimization of power plant operation modes; to demonstrate the possibility and limitations of the developed tools on the basis of real-life and forecast data. In this paper, a case study is performed using the main components of the overall modelling framework being developed. It focuses on the Baltic power systems in 2050 under the conditions of significant expansion in the installed capacity of renewable energy sources (RESs) and diminished fossil fuel power plant activity. The resulting electricity generation mix and trade balance with neighbouring countries is assessed, showing that even with significant RES expansion, the Baltic countries remain net importers and because of the intermittency of RESs, there are hours within the year when the demand cannot be met.


2021 ◽  
Vol 5 (47) ◽  
pp. 4-4
Author(s):  
Alexander Saakian ◽  
◽  

In the conditions of regions with relatively low solar and wind potentials, interruptions in power supply to consumers powered by micro-power plants based on renewable energy sources may be due to a decrease in the power of wind power plants, photovoltaic modules with insufficient wind speed and insolation, respectively, to provide power to consumers. A study of the reliability of a system including a wind power plant, photovoltaic modules, a hybrid charge controller, an energy storage device and an inverter was carried out using a logical-probabilistic method. As part of the study, an analysis was made of the structure of the power supply system and its modes of operation in the event of various events: failure of system elements, replacement of failed elements, diagnostics of elements, decrease in the power of the wind power plant and photovoltaic modules. Combinations of events leading to a power failure of consumers connected to a hybrid micro-power plant have been determined. A fault tree was built for the hybrid micro-power plant. Expressions are obtained for calculating the probability of short-term, long-term power supply interruptions, the probability of power supply interruptions occurring when off-design insolation and wind speed occur. Mathematical modeling of the reliability of the hybrid micro-power plant for the conditions of the central part of the Republic of Mari El has been carried out. It has been determined that the probability of a system failure is determined mainly by the probability of long power outages. In this case, the reliability indicators of the system as a whole are largely determined by the values of the reliability indicators of the hybrid controller and inverter. Keywords: YBRID MICRO-POWER PLANT, RENEWABLE ENERGY SOURCES, RELIABILITY, RURAL POWER SUPPLY


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1502 ◽  
Author(s):  
Evrencan Özcan ◽  
Rabia Yumuşak ◽  
Tamer Eren

In this study, maintenance planning problem is handled in one of the hydroelectric power plants which directly affect Turkey’s energy supply security with a fifth share in the total generation. In this study, a result is obtained by taking into consideration the multi-objective and multi-criteria structure of the maintenance planning in the hydroelectric power plants with thousands of complex equipment and the direct effect of this equipment on uninterrupted and low-cost electricity generation. In the first stage, the risk levels of the equipment in terms of the power plant are obtained with the combination of AHP (Analytical Hierarchy Process) and TOPSIS (technique for order preference by similarity to ideal solution) which are frequently used in the literature due to their advantages. Department-based maintenance plans of all equipment for periodic and revision maintenance strategies are formed by integrating these values into the time allocated for maintenance and the number of employees constraints. As a result of the application of this methodology which is designed for the first time in the literature with the integration of multi-criteria decision-making methods for the maintenance planning problem in a hydroelectric power plant, all elements that prevent the sustainable energy supply in the power plant are eliminated.


Sign in / Sign up

Export Citation Format

Share Document