scholarly journals MICROSIMULATION-BASED PASSENGER CAR EQUIVALENTS FOR HEAVY VEHICLES DRIVING TURBO-ROUNDABOUTS

Transport ◽  
2016 ◽  
Vol 31 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Orazio Giuffrè ◽  
Anna Granà ◽  
Sergio Marino ◽  
Fabio Galatioto

Due to its geometric design, turbo-roundabouts impose greatest constraints to the vehicular trajectories; by consequence, one can expect a more unfavourable impact of heavy vehicles on the traffic conditions than on other types of roundabouts. The present paper addresses the question of how to estimate Passenger Car Equivalents (PCEs) for heavy vehicles driving turbo-roundabouts. The microsimulation approach used revealed as a useful tool for evaluating the variation of quality of traffic in presence of mixed fleets (different percentages of heavy vehicles). Based on the output of multiple runs of several scenarios simulation, capacity functions for each entry lane of the turbo-roundabout were developed and variability of the PCEs for heavy vehicles were calculated by comparing results for a fleet of passenger cars only with those of the mixed fleet scenarios. Results show a dependence of PCEs for heavy vehicles on operational conditions, which characterise the turbo-roundabout. Assuming the values of PCEs for roundabouts provided by the 2010 Highway Capacity Manual (HCM), depending on entering manoeuvring underestimation and overestimation of the effect of heavy vehicles on the quality of traffic conditions have been found.

2015 ◽  
Vol 776 ◽  
pp. 95-100
Author(s):  
I. Gusti Raka Purbanto

Motorcycle dominates traffic in Bali, particularly in urban roads, which occupy more than 85% of mode share. The three types of vehicles, i.e. motorcycles, heavy and light vehicles share the roadways together. Under mixed traffic conditions, motorcycle may be travelling in between and alongside two consecutive motor vehicles. Considering such a situation, passenger car equivalent values should be examined thoroughly. This study aims to determine passenger car equivalent (PCEs) of motorcycle at mid-block of Sesetan Road. Three approaches are used to examine the PCEs values. This study found that the PCE of motorcycles are in a range between 0.2 and 0.4. This values are about the same to the existing PCE of the Indonesian Highway Capacity Manual (1997). This study also pointed out that motorcyclists and car drivers may behave differently to the existence of motorcycles. Car drivers are more aware than motorcyclists on the existence of motorcycle on the road. Further, more samples are required to obtain comprehensive results. In addition, the presence of heavy vehicles need to be considered for future study.


2018 ◽  
Vol 181 ◽  
pp. 06006
Author(s):  
Najid

Value of Passenger Car Unit or commonly known as PCU value is a value that is given to any vehicle that is classified into heavy vehicles, light vehicles (passenger car) and motorcycles. The value of passenger car unit on Indonesia Highway Capacity Manual (IHCM) set up in 1997 is based on a study conducted from 1980-1990 in several cities in Indonesia At the time of the study, the traffic conditions are very different to the current traffic conditions. That affects of difference traffic conditions are the composition of traffic, traffic regulations, traffic density, traffic discipline and the presence of mass transit, so that the results of traffic analysis do not always correspond to reality as there are anomalies in the determination of the level of road service (Najid, 2014). As well the incompatibility of the capacity value which is considered due to the incompatibility value of Passenger Car Units (PCU). Evaluation PCU become very important to get the value of traffic parameters into compliance with actually occur. In accordance with the traffic density is higher actually, then it is necessary to study for evaluation against PCU current value and the need to approach or to get the value of PCU more in line with current traffic conditions. Data collected at two cities, those are Bandung and Semarang. Based on analysis found PCU’s value that got from survey have difference but not all significantly with PCU value in IHCM.


2017 ◽  
Vol 29 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Habibollah Nassiri ◽  
Sara Tabatabaie ◽  
Sina Sahebi

Due to their different sizes and operational characteristics, vehicles other than passenger cars have a different influence on traffic operations especially at intersections. The passenger car equivalent (PCE) is the parameter that shows how many passenger cars must be substituted for a specific heavy vehicle to represent its influence on traffic operation. PCE is commonly estimated using headway-based methods that consider the excess headway utilized by heavy vehicles. In this research, the PCE was estimated based on the delay parameter at three signalized intersections in Tehran, Iran. The data collected were traffic volume, travel time for each movement, signalization, and geometric design information. These data were analysed and three different models, one for each intersection, were constructed and calibrated using TRAF-NETSIM simulation software for unsaturated traffic conditions. PCE was estimated under different scenarios and the number of approach movements at each intersection. The results showed that for approaches with only one movement, PCE varies from 1.1 to 1.65. Similarly, for approaches with two and three movements, the PCE varies from 1.07 to 1.99 and from 0.76 to 3.6, respectively. In addition, a general model was developed for predicting PCE for intersections with all of the movements considered. The results obtained from this model showed that the average PCE of 1.5 is similar to the value recommended by the HCM (Highway Capacity Manual) 1985. However, the predicted PCE value of 1.9 for saturated threshold is closer to the PCE value of 2 which was recommended by the HCM 2000 and HCM 2010.


Author(s):  
Lily Elefteriadou ◽  
Darren Torbic ◽  
Nathan Webster

Passenger car equivalents (PCEs) have been used extensively in the Highway Capacity Manual to establish the impact of trucks, buses, and recreational vehicles on traffic operations. PCEs are currently being used for studying freeways, multilane highways, and two-lane highways. A heavy-vehicle factor is directly given for the impact of heavy vehicles at signalized intersections (and indirectly along arterials). These PCE values are typically based on a limited number of simulations and on older simulation models. In addition, the impact of variables such as traffic flow, truck percentage, truck type (i.e., length and weight/horsepower ratio), grade, and length of grade on PCEs has not been evaluated in depth for all facility types. The methodology for developing PCEs for different truck types for the full range of traffic conditions on freeways, two-lane highways, and arterials is described. Given the scope of this research and the variability of traffic conditions to be examined, simulation was selected as the most appropriate tool. The resulting PCE values for freeways, two-lane highways, and arterials indicated that some variables, such as percentage of trucks, do not always have the expected effect on PCEs, whereas other variables, such as vehicle type, are crucial in the calculations. Generally, major differences in PCEs occurred for the longer and steeper grades. There was great variability in PCE values as a function of the weight/horsepower ratio as well as of vehicle length.


Author(s):  
Fabio Sasahara ◽  
Lily Elefteriadou ◽  
Shen Dong

The Highway Capacity Manual (HCM) methodology for freeway systems yields average speed values for each segment and does not consider lane-by-lane flow and operational conditions. However, flows are not equally distributed between lanes. In congested conditions and particularly when spillback occurs, flows and traffic conditions vary widely. For example, the rightmost lane may be blocked while the leftmost lane is free-flowing. The purpose of this research is to develop a model for estimating lane-by-lane speeds and flows under various freeway designs and demands. Speed and flow data from loop detectors at several locations around the USA were collected, totaling 531,000 observations aggregated in 15-min intervals. The results show that lane flow distribution is highly dependent on the segment total flow, with different patterns for 4-, 6-, and 8-lane segments. The percentage of heavy vehicles, presence of nearby ramps, day of week, and time of day also affect the distribution of flow among freeway lanes. Theoretical lane-by-lane speed-flow curves were developed and the results were compared with field data. Results showed that lane-by-lane speeds can be estimated accurately, as long as inputs for capacity and free-flow speeds can be provided for each lane in the segment.


Author(s):  
Jianan Zhou ◽  
Laurence Rilett ◽  
Elizabeth Jones

In the 2016 Highway Capacity Manual (HCM-6), the impact of trucks on freeway operations is measured by passenger car equivalents (PCEs). PCEs are estimated by the equal capacity methodology. The HCM-6 PCE values are based on the assumptions that passenger cars and trucks travel at the same free-flow speed, that they travel on freeways with three lanes per direction, and that they travel in traffic with no more than 25% trucks. On Interstate 80 in western Nebraska, it is observed that the interaction of high truck percentages and large speed differences between passenger cars and trucks may result in moving bottlenecks. It was hypothesized that the current HCM-6 PCEs may be not appropriate for these conditions. A companion paper showed this was true and that the major cause was speed differentials between trucks and passenger cars. In essence, when slow-moving trucks pass each other they create moving bottlenecks, which results in increased PCE values. This paper is an extension to a companion paper and examines a number of issues related to estimation of PCEs. The paper examines the effect of speed limit, truck passing restrictions, and data aggregation interval on PCEs. The results show that: (i) if a higher speed limit is implemented, trucks will affect the passenger cars more severely; (ii) if truck passing is restricted by lane restrictions, the negative impacts of trucks on passenger car operation may be mitigated; and (iii) using a longer data aggregation interval results in lower PCE values, all else being equal.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Ebrahim Sangsefidi ◽  
Mohammadjafar Rashidbenam ◽  
Shahab Kabiri ◽  
Hossein Amid ◽  
Maryam Sangsefidi

Transport forms one of the primary needs in all categories of the population in modern society; it is of paramount concern for traffic engineers, transport planners, and policy makers to understand and evaluate the quality of service being provided by the transport facilities designed by them. This paper presents an investigation in profile geometric design and traffic flow operation on two-lane two-way highways and provides analyses that will help in a better understanding of traffic operation on these facilities to select the optimum profile configuration. The effects of influencing parameters consisting of grade, length of grade, traffic composition, and traffic volume are evaluated and finally a systematic procedure to evaluate flow rate under the base condition is presented. Finally, based on these achievements an algorithm is introduced to select optimum Finished Ground of profile view. Results show that the percentage of heavy vehicles has a contributing effect on traffic operation so that the optimum profile configuration is incredibly affected by this factor. Source data have been obtained from Highway Capacity Manual (HCM) as a pioneer document in respect of quantifying the concept of capacity for a transport facility.


Author(s):  
Madhav V. Chitturi ◽  
Rahim F. Benekohal

Traffic data were collected from 11 work zones on Interstate highways in Illinois in which one of the two lanes was open. The reductions in free-flow speed (FFS) due to narrow lanes and lateral clearances in work zones were studied. It was found that the reductions in FFSs of vehicles in work zones because of narrow lanes were higher than the reductions given in the Highway Capacity Manual for basic freeway sections. The data also showed that the narrower the lane was, the greater the speed reduction was. The data showed that the FFSs of heavy vehicles were statistically lower than the FFSs of passenger cars, even though the speed limit was the same for both types of vehicles. In addition, the reduction in the FFSs of heavy vehicles was greater than the reduction in the FFSs of passenger cars. This greater reduction in the speed of heavy vehicles affected the performance of the traffic stream in work zones. Thus, it should be considered in the computation of the passenger car equivalence for heavy vehicles. It is recommended that 10, 7, 4.4, and 2.1 mph be used for speed reduction in work zones for lane widths of 10, 10.5, 11, and 11.5 ft, respectively.


2012 ◽  
Vol 39 (10) ◽  
pp. 1145-1155 ◽  
Author(s):  
Ciprian Alecsandru ◽  
Sherif Ishak ◽  
Yan Qi

Truck lane restriction and differential speed limits for trucks and passenger cars are becoming more common policies to improve freeway operations and safety. The most recent edition of the Highway Capacity Manual (HCM) recognizes that the passenger car equivalent (ET) values may differ with various traffic conditions, but does not explicitly address how ET values may be impacted by truck lane restrictions or differential speed limit policies. This study developed a flow-based methodology to determine ET for trucks under truck lane restriction policies and different levels of demand and traffic composition. A simulation model (VISSIM) was calibrated to reproduce ET in HCM on a level terrain freeway segment and then used to simulate various scenarios to capture the effect of demand flow rate, truck percentage, and compliance ratio to lane restriction, all under the enforcement of differential speed limit policy. The results showed that ET increases as the compliance ratio increases, regardless of the truck percentage and demand flow rate. For a given traffic flow rate, ET decreases as the truck percentage increases. Moreover, regardless of the compliance ratio to lane restriction and the truck percentage, ET increases with the demand flow rate. The statistical analysis revealed that the truck percentage has a significant effect on ET for most cases, except when the truck percentage exceeds 30%. The results also showed significant differences in ET for all demand flow rates at 95% confidence level. The study also developed linear regression models for each level of service to estimate the value of ET as a function of the truck percentage and compliance ratio.


2019 ◽  
Vol 65 (2) ◽  
pp. 37-42
Author(s):  
Vuk Bogdanović ◽  
Nemanja Garunović ◽  
Valentina Basarić ◽  
Jelena Mitrović Simić

In 5th edition of Highway Capacity Manual (2010) the methodology for evaluating the quality of service provided to pedestrians traveling through a signalized intersection first time was shown. The same methodology has been retained in the latest edition of the aforementioned manual. Provided methodology include determination of the key parameters for evaluation the quality of service of pedestrian flows on signalized intersections. In this paper mentioned methodology was shown through the short procedural steps. In order to verify the possibility of applying this procedure in local conditions, an analysis of traffic conditions at an intersection in Novi Sad was performed as an example.


Sign in / Sign up

Export Citation Format

Share Document