Passenger car equivalents of trucks on four-lane rural freeways under lane restriction and different traffic conditions

2012 ◽  
Vol 39 (10) ◽  
pp. 1145-1155 ◽  
Author(s):  
Ciprian Alecsandru ◽  
Sherif Ishak ◽  
Yan Qi

Truck lane restriction and differential speed limits for trucks and passenger cars are becoming more common policies to improve freeway operations and safety. The most recent edition of the Highway Capacity Manual (HCM) recognizes that the passenger car equivalent (ET) values may differ with various traffic conditions, but does not explicitly address how ET values may be impacted by truck lane restrictions or differential speed limit policies. This study developed a flow-based methodology to determine ET for trucks under truck lane restriction policies and different levels of demand and traffic composition. A simulation model (VISSIM) was calibrated to reproduce ET in HCM on a level terrain freeway segment and then used to simulate various scenarios to capture the effect of demand flow rate, truck percentage, and compliance ratio to lane restriction, all under the enforcement of differential speed limit policy. The results showed that ET increases as the compliance ratio increases, regardless of the truck percentage and demand flow rate. For a given traffic flow rate, ET decreases as the truck percentage increases. Moreover, regardless of the compliance ratio to lane restriction and the truck percentage, ET increases with the demand flow rate. The statistical analysis revealed that the truck percentage has a significant effect on ET for most cases, except when the truck percentage exceeds 30%. The results also showed significant differences in ET for all demand flow rates at 95% confidence level. The study also developed linear regression models for each level of service to estimate the value of ET as a function of the truck percentage and compliance ratio.

Author(s):  
Jianan Zhou ◽  
Laurence Rilett ◽  
Elizabeth Jones

In the 2016 Highway Capacity Manual (HCM-6), the impact of trucks on freeway operations is measured by passenger car equivalents (PCEs). PCEs are estimated by the equal capacity methodology. The HCM-6 PCE values are based on the assumptions that passenger cars and trucks travel at the same free-flow speed, that they travel on freeways with three lanes per direction, and that they travel in traffic with no more than 25% trucks. On Interstate 80 in western Nebraska, it is observed that the interaction of high truck percentages and large speed differences between passenger cars and trucks may result in moving bottlenecks. It was hypothesized that the current HCM-6 PCEs may be not appropriate for these conditions. A companion paper showed this was true and that the major cause was speed differentials between trucks and passenger cars. In essence, when slow-moving trucks pass each other they create moving bottlenecks, which results in increased PCE values. This paper is an extension to a companion paper and examines a number of issues related to estimation of PCEs. The paper examines the effect of speed limit, truck passing restrictions, and data aggregation interval on PCEs. The results show that: (i) if a higher speed limit is implemented, trucks will affect the passenger cars more severely; (ii) if truck passing is restricted by lane restrictions, the negative impacts of trucks on passenger car operation may be mitigated; and (iii) using a longer data aggregation interval results in lower PCE values, all else being equal.


Transport ◽  
2016 ◽  
Vol 31 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Orazio Giuffrè ◽  
Anna Granà ◽  
Sergio Marino ◽  
Fabio Galatioto

Due to its geometric design, turbo-roundabouts impose greatest constraints to the vehicular trajectories; by consequence, one can expect a more unfavourable impact of heavy vehicles on the traffic conditions than on other types of roundabouts. The present paper addresses the question of how to estimate Passenger Car Equivalents (PCEs) for heavy vehicles driving turbo-roundabouts. The microsimulation approach used revealed as a useful tool for evaluating the variation of quality of traffic in presence of mixed fleets (different percentages of heavy vehicles). Based on the output of multiple runs of several scenarios simulation, capacity functions for each entry lane of the turbo-roundabout were developed and variability of the PCEs for heavy vehicles were calculated by comparing results for a fleet of passenger cars only with those of the mixed fleet scenarios. Results show a dependence of PCEs for heavy vehicles on operational conditions, which characterise the turbo-roundabout. Assuming the values of PCEs for roundabouts provided by the 2010 Highway Capacity Manual (HCM), depending on entering manoeuvring underestimation and overestimation of the effect of heavy vehicles on the quality of traffic conditions have been found.


2020 ◽  
Vol 11 (1) ◽  
pp. 216-226
Author(s):  
Bara’ W. Al-Mistarehi ◽  
Ahmad H. Alomari ◽  
Mohamad S. Al Zoubi

AbstractThis study aimed to investigate a potential list of variables that may have an impact on the saturation flow rate (SFR) associated with different turning movements at signalized intersections in Jordan. Direct visits to locations were conducted, and a video camera was used. Highway capacity manual standard procedure was followed to collect the necessary traffic data. Multiple linear regression was performed to classify the factors that impact the SFR and to find the optimal model to foretell the SFR. Results showed that turning radius, presence of camera enforcement, and the speed limit are the significant factors that influence SFR for shared left- and U-turning movements (LUTM) with R2 = 76.9%. Furthermore, the presence of camera enforcement, number of lanes, speed limit, city, traffic volume, and area type are the factors that impact SFR for through movements only (THMO) with R2 = 69.6%. Also, it was found that the SFR for LUTM is 1611 vehicles per hour per lane (VPHPL),which is less than the SFR for THMO that equals to 1840 VPHPL. Calibration and validation of SFR based on local conditions can improve the efficiency of infrastructure operation and planning activities because vehicles’ characteristics and drivers’ behavior change over time.


2019 ◽  
Vol 5 (1) ◽  
pp. 39
Author(s):  
Rizki Intan Mauliza ◽  
Tania Bonita Sabrina ◽  
Wahyu Maulana

ABSTRAKSalah satu faktor penyebab kecelakaan yang signifikan adalah tidak sesuainya kecepatan kendaraan dengan kondisi jalan, lingkungan dan kegiatan, dalam hal ini adalah kecepatan yang terlalu tinggi. Jalan tol/jalan bebas hambatan merupakan salah satu jalan yang berpotensi memiliki banyak pelanggaran dalam kecepatan kendaraan. Batasan kecepatan jalan tol telah di atur dalam PM Hub 111/2015 yaitu 40 km/jam untuk tol dalam kota dan 60 km/jam - 100 km/jam untuk tol luar kota. Untuk memastikan kecepatan rata-rata kendaraan dan menentukan tingkat pelanggaran kendaraan yang melintasi ruas jalan tol Cipularang maka penelitian menggunakan metode pengumpulan data primer/pengamatan secara langsung. Hasil analisis secara keseluruhan didapatkan bahwa rata-rata kecepatan kendaraan mobil penumpang sebesar 88 km/jam, truk 62 km/jam dan bus 72 km/jam dengan persentasi kecepatan rata-rata untuk mobil penumpang, truk dan bus berturut-turut sebesar 43%, 5% dan 22%. Hal ini menunjukan terdapat pelanggaran batas kecepatan maksimum untuk kendaraan mobil penumpang dengan prosentase yang tinggi (lebih dari 30%) atau kecepatan rata-rata lebih dari 80 km/jam.Kata kunci: kecelakaan, batas kecepatan, jalan tol ABSTRACTOne factors of a significant accident is not according to the speed of the vehicle with the environment, environment and activities, in this case the speed is too high. Toll road / freeway is one of the roads that has many roads in the vehicle. The toll road speed limit has been set in PM Hub 111/2015, which is 40 km/hour  for city tolls and 60 km/hour  100 km/hour for out-of-city toll roads. To determine the average speed of a vehicle and determine the level of the vehicle passing through the Cipularang toll road, the study uses the primary data / direct search method. The overall analysis results are obtained that the average speed of passenger car vehicles is 88 km/hour, trucks 62 km/hour and buses 72 km/hour with the percentage of average speed for passenger cars, trucks and buses being helped-along by 43%, 5% and 22%. This shows the maximum speed limit for passenger car vehicles with a higher percentage (more than 30%) or an average speed of more than 80 km/hour.Keywords: accidents, speed limits, toll roads


2015 ◽  
Vol 776 ◽  
pp. 95-100
Author(s):  
I. Gusti Raka Purbanto

Motorcycle dominates traffic in Bali, particularly in urban roads, which occupy more than 85% of mode share. The three types of vehicles, i.e. motorcycles, heavy and light vehicles share the roadways together. Under mixed traffic conditions, motorcycle may be travelling in between and alongside two consecutive motor vehicles. Considering such a situation, passenger car equivalent values should be examined thoroughly. This study aims to determine passenger car equivalent (PCEs) of motorcycle at mid-block of Sesetan Road. Three approaches are used to examine the PCEs values. This study found that the PCE of motorcycles are in a range between 0.2 and 0.4. This values are about the same to the existing PCE of the Indonesian Highway Capacity Manual (1997). This study also pointed out that motorcyclists and car drivers may behave differently to the existence of motorcycles. Car drivers are more aware than motorcyclists on the existence of motorcycle on the road. Further, more samples are required to obtain comprehensive results. In addition, the presence of heavy vehicles need to be considered for future study.


2018 ◽  
Vol 181 ◽  
pp. 06006
Author(s):  
Najid

Value of Passenger Car Unit or commonly known as PCU value is a value that is given to any vehicle that is classified into heavy vehicles, light vehicles (passenger car) and motorcycles. The value of passenger car unit on Indonesia Highway Capacity Manual (IHCM) set up in 1997 is based on a study conducted from 1980-1990 in several cities in Indonesia At the time of the study, the traffic conditions are very different to the current traffic conditions. That affects of difference traffic conditions are the composition of traffic, traffic regulations, traffic density, traffic discipline and the presence of mass transit, so that the results of traffic analysis do not always correspond to reality as there are anomalies in the determination of the level of road service (Najid, 2014). As well the incompatibility of the capacity value which is considered due to the incompatibility value of Passenger Car Units (PCU). Evaluation PCU become very important to get the value of traffic parameters into compliance with actually occur. In accordance with the traffic density is higher actually, then it is necessary to study for evaluation against PCU current value and the need to approach or to get the value of PCU more in line with current traffic conditions. Data collected at two cities, those are Bandung and Semarang. Based on analysis found PCU’s value that got from survey have difference but not all significantly with PCU value in IHCM.


2016 ◽  
Vol 43 (7) ◽  
pp. 593-598 ◽  
Author(s):  
Mithun Mohan ◽  
Satish Chandra

Traffic in developing countries is often distinguished from others for its diversity in vehicular composition and passenger car equivalents (PCE) becomes essential in such conditions for expressing traffic volume in terms of equivalent number of passenger cars. The PCE estimation at two-way stop-controlled intersections in developing countries is further complicated by the lack of movement priority and lane discipline. The study introduces a method to find PCE factors based on the time taken by a queue of vehicles to completely clear the intersection and composition of the queue. The method is validated through simulations in VISSIM software and was then used to derive PCE factors for three intersections in India. Although the method is developed and tested to estimate PCE factors under highly heterogeneous traffic at priority junctions in India, it is quite general in nature and can be used in traffic conditions found in developed countries as well.


2017 ◽  
Vol 29 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Habibollah Nassiri ◽  
Sara Tabatabaie ◽  
Sina Sahebi

Due to their different sizes and operational characteristics, vehicles other than passenger cars have a different influence on traffic operations especially at intersections. The passenger car equivalent (PCE) is the parameter that shows how many passenger cars must be substituted for a specific heavy vehicle to represent its influence on traffic operation. PCE is commonly estimated using headway-based methods that consider the excess headway utilized by heavy vehicles. In this research, the PCE was estimated based on the delay parameter at three signalized intersections in Tehran, Iran. The data collected were traffic volume, travel time for each movement, signalization, and geometric design information. These data were analysed and three different models, one for each intersection, were constructed and calibrated using TRAF-NETSIM simulation software for unsaturated traffic conditions. PCE was estimated under different scenarios and the number of approach movements at each intersection. The results showed that for approaches with only one movement, PCE varies from 1.1 to 1.65. Similarly, for approaches with two and three movements, the PCE varies from 1.07 to 1.99 and from 0.76 to 3.6, respectively. In addition, a general model was developed for predicting PCE for intersections with all of the movements considered. The results obtained from this model showed that the average PCE of 1.5 is similar to the value recommended by the HCM (Highway Capacity Manual) 1985. However, the predicted PCE value of 1.9 for saturated threshold is closer to the PCE value of 2 which was recommended by the HCM 2000 and HCM 2010.


Author(s):  
Antonio Hurtado-Beltran ◽  
Laurence R. Rilett

In the current version of the Highway Capacity Manual (HCM-6), equal-capacity passenger car equivalencies (EC-PCEs) are used to account for the effect of trucks for capacity analyses. The EC-PCEs for freeway segments were estimated using a microsimulation-based methodology where the capacities of the mixed-traffic and car-only flow scenarios were modeled. A nonlinear regression (NLR) model was used to develop capacity adjustment factor (CAF) models using the microsimulation data as input. The NLR model has a complex model structure and includes 15 model parameters. It is argued in this paper that simpler regression models could provide comparable results. This would allow CAF and EC-PCE equations to be used directly in the HCM-6 rather than tables. It would also allow for the development of new regression models for exploring new technologies such as connected and automated vehicles (CAVs). The objective of this paper was to develop alternative and simpler regression models of CAFs needed to derive the EC-PCE values in the HCM-6 methodology for freeway and multilane highway segments. It was found that simpler regression models provided similar results as those obtained with the current NLR model. Additionally, it was found that the current NLR model may not be adequate for analyzing CAV traffic conditions. If the HCM-6 EC-PCE methodology is expected to be used to analyze traffic conditions beyond the scope of the HCM-6, it is important to perform a deeper assessment of the form and error of the regression models used in fitting the simulated and estimated data.


2021 ◽  
Author(s):  
Dmitri Nemchinov ◽  
Dmitri Martiakhin ◽  
Pavel Pospelov ◽  
Tatiana Komarova ◽  
Alexandr Mikhailov

Predicting the traffic capacity and its elements requires bringing the traffic flow represented by various vehicles to uniformity expressed in the equivalent number of passenger cars, through the use of the passenger car equivalent coefficients (PCE). The currently used in Russian Federation passenger car equivalent coefficients are taken on the basis of studies of the capacity of the Russian Federation, carried out in the 70s - 80s of the last century on rural roads, where most of the vehicles were heavy vehicles. Currently, the traffic flow is mostly represented by passenger cars. The riding qualities of cars, especially trucks, have changed significantly. This situation is especially common to Moscow. In this regard, the question of clarifying the traffic flow composition and revising the passenger car equivalent coefficients becomes relevant. The article presents the methodology and results of studies carried out on the route sections between road crossings to determine the passenger car equivalent coefficients and the traffic composition in Moscow.


Sign in / Sign up

Export Citation Format

Share Document