EXPERIMENTAL RESEARCH OF PARTIAL REGULAR MICRORELIEFS FORMED ON ROTARY BODY FACE SURFACES

Aviation ◽  
2021 ◽  
Vol 25 (4) ◽  
pp. 268-277
Author(s):  
Volodymyr Dzyura ◽  
Pavlo Maruschak ◽  
Stoyan Slavov ◽  
Diyan Dimitrov ◽  
Dimka Vasileva

The basic regularities in the influence of processing parameters on the geometrical characteristics of the partially regular microreliefs, formed on the rotary body face surface, are established. Combinations of partially regular microreliefs are formed by using a contemporary CNC milling machine, and an advanced programing method, based on previously developed mathematical models. Full factorial experimental design is carried out, which consist of three factors, varied on three levels. Regression stochastic models in coded and natural form, which give the relations between the width of the grooves and the deforming force, feed rate and the pitch of the axial grooves, are derived as a result. Response surfaces and contour plots are built in order to facilitate the results analysis. Based on the dependencies of the derived regression stochastic models, it is found that the greatest impact on the width of the grooves has the magnitude of the deforming force,followed by the feed rate. Also, it is found that the axial pitch between adjacent toolpaths has the least impact on the width of the grooves. As a result of the full-factorial experiment, the average geometric parameters of the microrelief grooves were obtained on their basis. When used, these values will provide for the required value of the relative burnishing area of the surface with regular microreliefs, and, accordingly, the specified operational properties.

2019 ◽  
Vol 29 (3) ◽  
pp. 454-466
Author(s):  
P Ghabezi ◽  
M Farahani ◽  
A Shahmirzaloo ◽  
H Ghorbani ◽  
NM Harrison

In this paper, a comprehensive experimental investigation was carried out to precisely characterize the delamination and uncut fiber in the drilling process. A digital imaging procedure was developed in order to calculate the damage resulted from the drilling process. A novel method is proposed in this article based on image intensity to verify the obtained results. A full factorial experimental design was performed to evaluate the importance of the drilling parameters. Among other process parameters, feed rate, cutting speed, and tool diameter are the principal factors responsible for the delamination damage size during the drilling. The drilling process was assessed based on two proposed incurred damage factors, specifically the delamination factor and uncut fiber factor. Experimental results demonstrated that the feed rate was the paramount parameter for both delamination and uncut fiber factors. It was observed that both factors increased with an increase in the feed rate. Additionally, by increasing the tool diameter, the delamination and uncut fiber factors significantly increase. The effects of the cutting speed on damage factors were not linear. The minimum delamination factor and uncut fiber factor were obtained at the cutting speed of 1500 and 2500 r/min, respectively.


Author(s):  
Yahui Hu ◽  
Xucai Hu ◽  
Zhenhao Fan ◽  
Zhuo Liu ◽  
Chunqiu Zhang ◽  
...  

Craniotomy, as a part of neurosurgery, implies a safe opening of the skull with mechanical equipment. Grinding is a traditional machining method that can accurately and efficiently remove bone tissue. Aiming at low-damage and high-efficiency bone grinding, this study analyzed the kinematic law of a single abrasive grain during the grinding process. The theoretical model of grinding force was established based on the calculation of specific energy and friction force. The grinding test platform was set up, and the full factorial experimental design was performed to link the grinding force evolution with different processing parameters. The experimental results obtained on porcine femurs validated the model predictions where the grinding force grew with feed speed and grinding depth; it exhibited a decreasing trend with rotation speed, followed by increasing one.


Author(s):  
Dieudonne Essola ◽  
Achille Pandong Njomoue ◽  
Florence Offole ◽  
Cyrille Adiang Mezoue ◽  
Crick Nelson Zanga ◽  
...  

This work investigates the effect of low frequency vibratory processing for cleaning and washing various machine components parts from rusts and old paints deposits. The experimental investigation was carried out with special prepared samples that were weighted and exposed to paints and rust contaminants. These samples were treated in universal horizontal vibration machine UVHM 4 × 10 with different combination of instrumental processing medium, process fluid, machine amplitude and frequency of oscillations. They were periodically reweighted after processing and compared to etalon with control of quantity of dust that have been removed, sample cleanliness and also other functional parameters. Statistical analysis has been used to characterize ongoing process and full factorial analysis to establish experimental parameters dependency. The result is showing the complex dependence of samples cleanliness to each processing parameters like processing time, amplitude of oscillations, frequency of oscillations, process fluid parameters, instrumental medium, etc. Between this parameters although the most important successively the amplitude of oscillations, the frequency of oscillations the processing medium and the processing fluid depending to his considered composition, the optimal processing time can be reach only by complex combination of all this parameters every of them carry an amplify coefficient. Low frequency oscillations can be used to monitor and optimize washing and cleaning operations of paints and rusts contaminations. That guarantees process automation, its effectiveness for a large industrial application.


2020 ◽  
Vol 2 (2) ◽  
pp. 49-60
Author(s):  
Farizi Rachman Farizi Rachman ◽  
Bayu Wiro K ◽  
Tri Andi Setiawan ◽  
Pradita Nurkholies

Industri manufaktur di Indonesia semakin meningkat seiring dengan tingkat kebutuhan manusia yang beraneka ragam dan memicu berkembangnya teknologi, salah satunya industri proses permesinan atau machining. Kualitas produk yang baik dapat dilihat dari tingkat kekasaran permukaannya karena kekasaran permukaan dapat mempengaruhi performa yang berkaitan dengan aspek fungsional dari produk. Pada penelitian ini telah dilakukan optimasi setting parameter CNC milling terhadap kekasaran permukaan pada material S50C dengan end mill HSS diameter 8 mm. Material S50C banyak digunakan dalam manufaktur mesin seperti mekanis base plate, roda gigi, standart punch head dan komponen mesin lainnya. Penelitian ini menggunakan metode Taguchi. Parameter yang digunakan yaitu spindle speed, Feed rate dan depth of cut dengan cairan pendingin sebagai variabel konstan. Parameter optimum untuk mendapatkan nillai kekasaran yang rendah yaitu spindle speed 1100 rpm, feed rate 46 mm/min dan depth of cut 0.5 mm. Dengan taraf signifikansi 0.1 menunjukkan bahwa spindle speed berpengaruh secara signifikan dengan kontribusi 38.42% diikuti feed rate dengan kontribusi 34.16%.


2021 ◽  
Author(s):  
Ioana Maria Bodea ◽  
Florin Ioan Beteg ◽  
Carmen Rodica Pop ◽  
Adriana Paula David ◽  
Mircea Cristian Dudescu ◽  
...  

Abstract Bacterial cellulose (BC) is a natural polymer with properties suitable for tissue engineering and possible applications in scaffold production. However, current procedures have limitations in obtaining BC pellicles with the desired structural, physical, and mechanical properties. Thus, this study analyzed the optimal culture conditions of BC membranes and 2 types of processing: draining and oven-drying. The aim was to obtain BC membranes with properties suitable for a wound dressing material. Two studies were carried out. In the preliminary study the medium (100 mL) was inoculated with varying volumes (1; 2; 3; 4; and 5 mL) and incubated statically for different periods (3; 6; 9; 12; and 18 days), using a full factorial experimental design. Thickness, uniformity, weight, and yield were evaluated. In the optimization study, a Box–Behnken design was used. Two independent variables were used: inoculum volume (X1: 1; 3; and 5 mL) and fermentation period (X2: 6; 12; and 18 d) to determine the target response variables: thickness, swelling ratio, drug release, fiber diameter, Tensile strength, and Young's Modulus for both dry and moist BC membranes. The mathematical modelling of the effect of the 2 independent variables was accomplished by response surface methodology (RSM). The obtained models were validated with new experimental values, and confirmed for all tested properties, except Young Modulus of oven-dried BC. Thus, the optimal properties in terms of a scaffold material of the moist BC were obtained with an inoculum volume of 5% (v/v) and 16 d of fermentation. While, for the oven-dried membranes a 4% (v/v) and 14 d of fermentation.


Sign in / Sign up

Export Citation Format

Share Document