scholarly journals PENSION SERVICE INSTITUTION SELECTION BY A PERSONALIZED QUANTIFIER-BASED MACONT METHOD

2021 ◽  
Vol 25 (6) ◽  
pp. 446-458
Author(s):  
Zhi Wen ◽  
Huchang Liao

With the emergence of a variety of pension service institutions, how to choose a suitable institution has become a strategic decision-making problem faced by pension service demanders. To solve this problem, this study identifies key evaluation criteria of pension service institutions through the analysis of the relevant literature. Then, this study proposes a mixed aggregation by comprehensive normalization technique (MACONT) with a personalized quantifier to select pension service institutions, where the personalized qualifier with cubic spline interpolation is used to derive the position weights of criteria, and the MACONT is improved to determine the ranking of alternatives. A case study about the selection of pension service institutions is provided to verify the feasibility of the proposed model. It is found that the proposed method is effective in dealing with heterogeneous evaluation information, and the personalized quantifiers can be combined with MACONT methods to obtain an optimal solution associated with the attitude of pension service demanders. The identified key evaluation criteria are not only significant for pension service demanders, but also conducive to the further improvement of property management related to pension services.

2012 ◽  
Vol 601 ◽  
pp. 570-575
Author(s):  
Hong Fei Wang

In the process of selecting manufacturing suppliers, most research works focus on the final decision making problem. However, the process is a dynamic and rapidly changing evolving one and it is necessary to gradually adjust and optimize multi-criteria parameters such as price, time and quality and so on. The objective of this paper is to propose an interval optimization model of multi-criteria parameters and introduce the distance metric of Euclidean distance and vector theories to construct the model. An adaptive genetic algorithm based on real encoding is applied to obtain the optimal solution. Finally, a practical example is implemented to verify the validity of the proposed model and approach.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3615
Author(s):  
Adelaide Cerveira ◽  
Eduardo J. Solteiro Pires ◽  
José Baptista

Green energy has become a media issue due to climate changes, and consequently, the population has become more aware of pollution. Wind farms are an essential energy production alternative to fossil energy. The incentive to produce wind energy was a government policy some decades ago to decrease carbon emissions. In recent decades, wind farms were formed by a substation and a couple of turbines. Nowadays, wind farms are designed with hundreds of turbines requiring more than one substation. This paper formulates an integer linear programming model to design wind farms’ cable layout with several turbines. The proposed model obtains the optimal solution considering different cable types, infrastructure costs, and energy losses. An additional constraint was considered to limit the number of cables that cross a walkway, i.e., the number of connections between a set of wind turbines and the remaining wind farm. Furthermore, considering a discrete set of possible turbine locations, the model allows identifying those that should be present in the optimal solution, thereby addressing the optimal location of the substation(s) in the wind farm. The paper illustrates solutions and the associated costs of two wind farms, with up to 102 turbines and three substations in the optimal solution, selected among sixteen possible places. The optimal solutions are obtained in a short time.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1843
Author(s):  
Jelena Vlaović ◽  
Snježana Rimac-Drlje ◽  
Drago Žagar

A standard called MPEG Dynamic Adaptive Streaming over HTTP (MPEG DASH) ensures the interoperability between different streaming services and the highest possible video quality in changing network conditions. The solutions described in the available literature that focus on video segmentation are mostly proprietary, use a high amount of computational power, lack the methodology, model notation, information needed for reproduction, or do not consider the spatial and temporal activity of video sequences. This paper presents a new model for selecting optimal parameters and number of representations for video encoding and segmentation, based on a measure of the spatial and temporal activity of the video content. The model was developed for the H.264 encoder, using Structural Similarity Index Measure (SSIM) objective metrics as well as Spatial Information (SI) and Temporal Information (TI) as measures of video spatial and temporal activity. The methodology that we used to develop the mathematical model is also presented in detail so that it can be applied to adapt the mathematical model to another type of an encoder or a set of encoding parameters. The efficiency of the segmentation made by the proposed model was tested using the Basic Adaptation algorithm (BAA) and Segment Aware Rate Adaptation (SARA) algorithm as well as two different network scenarios. In comparison to the segmentation available in the relevant literature, the segmentation based on the proposed model obtains better SSIM values in 92% of cases and subjective testing showed that it achieves better results in 83.3% of cases.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mitra Salmaninezhad ◽  
S. Mahmood Jazayeri Moghaddas

PurposePier scour is one of the main causes of damage to the columns of the river bridges. It is essential to select the best method among various repair methods based on different evaluation indices. However, there is no procedure for ranking these repair methods based on their attributes. The present study seeks to set an approach for this ranking.Design/methodology/approachIn this paper, a multi-attribute decision-making (MADM) model is presented for ranking the repair techniques, in which alternatives are examined using the most important evaluation criteria. In addition, a combination of entropy and eigenvector methods has been proposed for weighting these attributes. A case study is then used to demonstrate the applicability and the validity of the method.FindingsThe execution of the model using two multi-criteria methods yielded similar results, which confirms its accuracy and precision. Moreover, the research findings showed the consistency of the objective and subjective weighting methods and the conformity of the weights obtained for the attributes from the combination of these methods to the nature of the problem.Originality/valueThe selection of the proper method for repairing the bridge columns plays an essential role in success of the bridge restoration. The proposed model introduces an approach for ranking repair methods and selecting the best one that has not been presented so far. Also, the weighing method for attributes is an innovative method for ranking restoration methods that has been proven in a case study.


2017 ◽  
Vol 1 (2) ◽  
pp. 89-103 ◽  
Author(s):  
M. Daniel Bennett

This article reviews relevant literature and proposes a theoretically grounded conceptual model by which to inform, and potentially advance, the exploratory study of the effects of neighborhood disorder on the psychosocial, emotional, and cultural pathways that are thought to influence social and developmental outcomes for African American youth and young adults. Similar to the social determinants of health model which asserts that the distribution of social and economic resources across populations influences differences in health status, the proposed model posits that environment determines social and developmental outcomes and hence life-course trajectories.


Author(s):  
Doaa Wafik ◽  
O. E. Emam

The aim of this paper is to use a bi-level linear programming technique with rough parameters in the constraints, for measuring the technical efficiency of local banks in UAE and Egypt, while the proposed linear objective functions will be maximized for different goals. Based on Dauer's and Krueger's goal programmingmethod, the described approach was developed to deal with the bi-level decision-making problem. The concept of tolerance membership function together was used to generate the optimal solution for the problem under investigation. Also an auxiliary problem is discussed to illustrate the functionality of the proposed approach.


Author(s):  
Stella Sylaiou ◽  
Martin White ◽  
Fotis Liarokapis

This chapter describes the evaluation methods conducted for a digital heritage system, called ARCO (Augmented Representation of Cultural Objects), which examines the tools and methods used for its evaluation. The case study describes the knowledge acquired from several user requirement assessments, and further describes how to use this specific knowledge to provide a general framework for a holistic virtual museum evaluation. This approach will facilitate designers to determine the flaws of virtual museum environments, fill the gap between the technologies they use and those the users prefer and improve them in order to provide interactive and engaging virtual museums. The proposed model used not only quantitative, but also qualitative evaluation methods, and it is based on the extensive evaluations of the ARCO system by simple end-users, usability experts and domain experts. The main evaluation criteria were usability, presence, and learning.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Kun-Chou Lee ◽  
Pai-Ting Lu

In this paper, the whale optimization algorithm (WOA) is applied to the inverse scattering of an imperfect conductor with corners. The WOA is a new metaheuristic optimization algorithm. It mimics the hunting behavior of humpback whales. The inspiration results from the fact that a whale recognizes the location of a prey (i.e., optimal solution) by swimming around the prey within a shrinking circle and along a spiral-shaped path simultaneously. Initially, the inverse scattering is first transformed into a nonlinear optimization problem. The transformation is based on the moment method solution for scattering integral equations. To treat a target with corners and implement the WOA inverse scattering, the cubic spline interpolation is utilized for modelling the target shape function. Numerical simulation shows that the inverse scattering by WOA not only is accurate but also converges fast.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1366
Author(s):  
Da Hye Lee ◽  
In Hong Chang ◽  
Hoang Pham

Software reliability and quality are crucial in several fields. Related studies have focused on software reliability growth models (SRGMs). Herein, we propose a new SRGM that assumes interdependent software failures. We conduct experiments on real-world datasets to compare the goodness-of-fit of the proposed model with the results of previous nonhomogeneous Poisson process SRGMs using several evaluation criteria. In addition, we determine software reliability using Wald’s sequential probability ratio test (SPRT), which is more efficient than the classical hypothesis test (the latter requires substantially more data and time because the test is performed only after data collection is completed). The experimental results demonstrate the superiority of the proposed model and the effectiveness of the SPRT.


Computers ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
Jan Pavlas ◽  
Ondrej Krejcar ◽  
Petra Maresova ◽  
Ali Selamat

We live in a heavily technologized global society. It is therefore not surprising that efforts are being made to integrate current information technology into the treatment of diabetes mellitus. This paper is dedicated to improving the treatment of this disease through the use of well-designed mobile applications. Our analysis of relevant literature sources and existing solutions has revealed that the current state of mobile applications for diabetics is unsatisfactory. These limitations relate both to the content and the Graphical User Interface (GUI) of existing applications. Following the analysis of relevant studies, there are four key elements that a diabetes mobile application should contain. These elements are: (1) blood glucose levels monitoring; (2) effective treatment; (3) proper eating habits; and (4) physical activity. As the next step in this study, three prototypes of new mobile applications were designed. Each of the prototypes represents one group of applications according to a set of given rules. The most optimal solution based on the users’ preferences was determined by using a questionnaire survey conducted with a sample of 30 respondents participating in a questionnaire after providing their informed consent. The age of participants was from 15 until 30 years old, where gender was split to 13 males and 17 females. As a result of this study, the specifications of the proposed application were identified, which aims to respond to the findings discovered in the analytical part of the study, and to eliminate the limitations of the current solutions. All of the respondents expressed preference for an application that includes not only the key functions, but a number of additional functions, namely synchronization with one of the external devices for measuring blood glucose levels, while five-sixths of them found suggested additional functions as being sufficient.


Sign in / Sign up

Export Citation Format

Share Document