scholarly journals AUTOMATED SHAPE-BASED PAVEMENT CRACK DETECTION APPROACH

Transport ◽  
2018 ◽  
Vol 33 (3) ◽  
pp. 598-608 ◽  
Author(s):  
Teng Wang ◽  
Kasthurirangan Gopalakrishnan ◽  
Omar Smadi ◽  
Arun K. Somani

Pavements are critical man-made infrastructure systems that undergo repeated traffic and environmental loadings. Consequently, they deteriorate with time and manifest certain distresses. To ensure long-lasting performance and appropriate level of service, they need to be preserved and maintained. Highway agencies routinely employ semiautomated and automated image-based methods for network-level pavement-cracking data collection, and there are different types of pavement-cracking data collected by highway agencies for reporting and management purposes. We design a shape-based crack detection approach for pavement health monitoring, which takes advantage of spatial distribution of potential cracks. To achieve this, we first extract Potential Crack Components (PCrCs) from pavement images. Next, we employ polynomial curve to fit all pixels within these components. Finally, we define a Shape Metric (SM) to distinguish crack blocks from background. We experiment the shape-based crack detection approach on different datasets, and compare detection results with an alternate method that is based on Support Vector Machines (SVM) classifier. Experimental results prove that our approach has the capability to produce higher detections and fewer false alarms. Additional research is needed to improve the robustness and accuracy of the developed approach in the presence of anomalies and other surface irregularities.

Author(s):  
Abdelhamid Bourouhou ◽  
Abdelilah Jilbab ◽  
Chafik Nacir ◽  
Ahmed Hammouch

<span lang="EN-US">In order to develop the assessment of phonocardiogram “PCG” signal for discrimination between two of people classes – individuals with heart disease and healthy one- we have adopted the database provided by "The PhysioNet/Computing in Cardilogy Challenge 2016", which contains records of heart sounds 'PCG '. This database is chosen in order to compare and validate our results with those already published. We subsequently extracted 20 features from each provided record. For classification, we used the Generalized Linear Model (GLM), and the Support Vector Machines (SVMs) with its different types of kernels (i.e.; Linear, polynomial and MLP). The best classification accuracy obtained was 88.25%, using the SVM classifier with an MLP kernel.</span>


2003 ◽  
Vol 15 (7) ◽  
pp. 1667-1689 ◽  
Author(s):  
S. Sathiya Keerthi ◽  
Chih-Jen Lin

Support vector machines (SVMs) with the gaussian (RBF) kernel have been popular for practical use. Model selection in this class of SVMs involves two hyper parameters: the penalty parameter C and the kernel width σ. This letter analyzes the behavior of the SVM classifier when these hyper parameters take very small or very large values. Our results help in understanding the hyperparameter space that leads to an efficient heuristic method of searching for hyperparameter values with small generalization errors. The analysis also indicates that if complete model selection using the gaussian kernel has been conducted, there is no need to consider linear SVM.


2011 ◽  
Vol 20 (03) ◽  
pp. 563-575 ◽  
Author(s):  
MEI LING HUANG ◽  
YUNG HSIANG HUNG ◽  
EN JU LIN

Support Vector Machines (SVMs) are based on the concept of decision planes that define decision boundaries, and Least Squares Support Vector (LS-SVM) Machine is the reformulation of the principles of SVM. In this study a diagnosis on a BUPA liver disorders dataset, is conducted LS-SVM with the Taguchi method. The BUPA Liver Disorders dataset includes 345 samples with 6 features and 2 class labels. The system approach has two stages. In the first stage, in order to effectively determine the parameters of the kernel function, the Taguchi method is used to obtain better parameter settings. In the second stage, diagnosis of the BUPA liver disorders dataset is conducted using the LS-SVM classifier; the classification accuracy is 95.07%; the AROC is 99.12%. Compared with the results of related research, our proposed system is both effective and reliable.


2010 ◽  
Vol 08 (01) ◽  
pp. 39-57 ◽  
Author(s):  
REZWAN AHMED ◽  
HUZEFA RANGWALA ◽  
GEORGE KARYPIS

Alpha-helical transmembrane proteins mediate many key biological processes and represent 20%–30% of all genes in many organisms. Due to the difficulties in experimentally determining their high-resolution 3D structure, computational methods to predict the location and orientation of transmembrane helix segments using sequence information are essential. We present TOPTMH, a new transmembrane helix topology prediction method that combines support vector machines, hidden Markov models, and a widely used rule-based scheme. The contribution of this work is the development of a prediction approach that first uses a binary SVM classifier to predict the helix residues and then it employs a pair of HMM models that incorporate the SVM predictions and hydropathy-based features to identify the entire transmembrane helix segments by capturing the structural characteristics of these proteins. TOPTMH outperforms state-of-the-art prediction methods and achieves the best performance on an independent static benchmark.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hao Jiang ◽  
Wai-Ki Ching

High dimensional bioinformatics data sets provide an excellent and challenging research problem in machine learning area. In particular, DNA microarrays generated gene expression data are of high dimension with significant level of noise. Supervised kernel learning with an SVM classifier was successfully applied in biomedical diagnosis such as discriminating different kinds of tumor tissues. Correlation Kernel has been recently applied to classification problems with Support Vector Machines (SVMs). In this paper, we develop a novel and parsimonious positive semidefinite kernel. The proposed kernel is shown experimentally to have better performance when compared to the usual correlation kernel. In addition, we propose a new kernel based on the correlation matrix incorporating techniques dealing with indefinite kernel. The resulting kernel is shown to be positive semidefinite and it exhibits superior performance to the two kernels mentioned above. We then apply the proposed method to some cancer data in discriminating different tumor tissues, providing information for diagnosis of diseases. Numerical experiments indicate that our method outperforms the existing methods such as the decision tree method and KNN method.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650037 ◽  
Author(s):  
José R. Villar ◽  
Paula Vergara ◽  
Manuel Menéndez ◽  
Enrique de la Cal ◽  
Víctor M. González ◽  
...  

The identification and the modeling of epilepsy convulsions during everyday life using wearable devices would enhance patient anamnesis and monitoring. The psychology of the epilepsy patient penalizes the use of user-driven modeling, which means that the probability of identifying convulsions is driven through generalized models. Focusing on clonic convulsions, this pre-clinical study proposes a method for generating a type of model that can evaluate the generalization capabilities. A realistic experimentation with healthy participants is performed, each with a single 3D accelerometer placed on the most affected wrist. Unlike similar studies reported in the literature, this proposal makes use of [Formula: see text] cross-validation scheme, in order to evaluate the generalization capabilities of the models. Event-based error measurements are proposed instead of classification-error measurements, to evaluate the generalization capabilities of the model, and Fuzzy Systems are proposed as the generalization modeling technique. Using this method, the experimentation compares the most common solutions in the literature, such as Support Vector Machines, [Formula: see text]-Nearest Neighbors, Decision Trees and Fuzzy Systems. The event-based error measurement system records the results, penalizing those models that raise false alarms. The results showed the good generalization capabilities of Fuzzy Systems.


2013 ◽  
Vol 333-335 ◽  
pp. 1080-1084
Author(s):  
Zhang Fei ◽  
Ye Xi

In this paper, we will propose a novel classification method of high-resolution SAR using local autocorrelation and Support Vector Machines (SVM) classifier. The commonly applied spatial autocorrelation indexes, called Moran's Index; Geary's Index, Getis's Index, will be used to depict the feature of the land-cover. Then, the SVM based on these indexes will be applied as the high-resolution SAR classifier. A Cosmo-SkyMed scene in ChengDu city, China is used for our experiment. It is shown that the method proposed can lead to good classification accuracy.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550010 ◽  
Author(s):  
Yassine Ben Ayed

In this paper, we propose an alternative keyword spotting method relying on confidence measures and support vector machines. Confidence measures are computed from phone information provided by a Hidden Markov Model based speech recognizer. We use three kinds of techniques, i.e., arithmetic, geometric and harmonic means to compute a confidence measure for each word. The acceptance/rejection decision of a word is based on the confidence vector processed by the SVM classifier for which we propose a new Beta kernel. The performance of the proposed SVM classifier is compared with spotting methods based on some confidence means. Experimental results presented in this paper show that the proposed SVM classifier method improves the performances of the keyword spotting system.


Sign in / Sign up

Export Citation Format

Share Document