scholarly journals Gravity and Rotation Drag the Magnetic Field in High-mass Star Formation

2020 ◽  
Vol 904 (2) ◽  
pp. 168
Author(s):  
Henrik Beuther ◽  
Juan D. Soler ◽  
Hendrik Linz ◽  
Thomas Henning ◽  
Caroline Gieser ◽  
...  
Author(s):  
Yasuo Fukui ◽  
Tsuyoshi Inoue ◽  
Takahiro Hayakawa ◽  
Kazufumi Torii

Abstract A supersonic cloud–cloud collision produces a shock-compressed layer which leads to formation of high-mass stars via gravitational instability. We carried out a detailed analysis of the layer by using the numerical simulations of magneto-hydrodynamics which deal with colliding molecular flows at a relative velocity of 20 km s−1 (Inoue & Fukui 2013, ApJ, 774, L31). Maximum density in the layer increases from 1000 cm−3 to more than 105 cm−3 within 0.3 Myr by compression, and the turbulence and the magnetic field in the layer are amplified by a factor of ∼5, increasing the mass accretion rate by two orders of magnitude to more than 10−4 $ M_{\odot } $ yr−1. The layer becomes highly filamentary due to gas flows along the magnetic field lines, and dense cores are formed in the filaments. The massive dense cores have size and mass of 0.03–0.08 pc and 8–$ 50\, M_{\odot } $ and they are usually gravitationally unstable. The mass function of the dense cores is significantly top-heavy as compared with the universal initial mass function, indicating that the cloud–cloud collision preferentially triggers the formation of O and early B stars. We argue that the cloud–cloud collision is a versatile mechanism which creates a variety of stellar clusters from a single O star like RCW 120 and M 20 to tens of O stars of a super star cluster like RCW 38 and a mini-starburst W 43. The core mass function predicted by the present model is consistent with the massive dense cores obtained by recent ALMA observations in RCW 38 (Torii et al. 2021, PASJ, in press) and W 43 (Motte et al. 2018, Nature Astron., 2, 478). Considering the increasing evidence for collision-triggered high-mass star formation, we argue that cloud–cloud collision is a major mechanism of high-mass star formation.


2018 ◽  
Vol 614 ◽  
pp. A64 ◽  
Author(s):  
H. Beuther ◽  
J. D. Soler ◽  
W. Vlemmings ◽  
H. Linz ◽  
Th. Henning ◽  
...  

Context. The importance of magnetic fields at the onset of star formation related to the early fragmentation and collapse processes is largely unexplored today. Aims. We want to understand the magnetic field properties at the earliest evolutionary stages of high-mass star formation. Methods. The Atacama Large Millimeter Array is used at 1.3 mm wavelength in full polarization mode to study the polarized emission, and, using this, the magnetic field morphologies and strengths of the high-mass starless region IRDC 18310-4. Results. Polarized emission is clearly detected in four sub-cores of the region; in general it shows a smooth distribution, also along elongated cores. Estimating the magnetic field strength via the Davis-Chandrasekhar-Fermi method and following a structure function analysis, we find comparably large magnetic field strengths between ~0.3–5.3 mG. Comparing the data to spectral line observations, the turbulent-to-magnetic energy ratio is low, indicating that turbulence does not significantly contribute to the stability of the gas clump. A mass-to-flux ratio around the critical value 1.0 – depending on column density – indicates that the region starts to collapse, which is consistent with the previous spectral line analysis of the region. Conclusions. While this high-mass region is collapsing and thus at the verge of star formation, the high magnetic field values and the smooth spatial structure indicate that the magnetic field is important for the fragmentation and collapse process. This single case study can only be the starting point for larger sample studies of magnetic fields at the onset of star formation.


2018 ◽  
Vol 14 (A30) ◽  
pp. 111-112
Author(s):  
Daria Dall’Olio ◽  
W. H. T. Vlemmings ◽  
M. V. Persson

AbstractMagnetic fields play a significant role during star formation processes, hindering the fragmentation and the collapse of the parental cloud, and affecting the accretion mechanisms and feedback phenomena. However, several questions still need to be addressed to clarify the importance of magnetic fields at the onset of high-mass star formation, such as how strong they are and at what evolutionary stage and spatial scales their action becomes relevant. Furthermore, the magnetic field parameters are still poorly constrained especially at small scales, i.e. few astronomical units from the central object, where the accretion disc and the base of the outflow are located. Thus we need to probe magnetic fields at different scales, at different evolutionary steps and possibly with different tracers. We show that the magnetic field morphology around high-mass protostars can be successfully traced at different scales by observing maser and dust polarised emission. A confirmation that they are effective tools is indeed provided by our recent results from 6.7 GHz MERLIN observations of the massive protostar IRAS 18089-1732, where we find that the small-scale magnetic field probed by methanol masers is consistent with the large-scale magnetic field probed by dust (Dall’Olio et al. 2017 A&A 607, A111). Moreover we present results obtained from our ALMA Band 7 polarisation observations of G9.62+0.20, which is a massive star-forming region with a sequence of cores at different evolutionary stages (Dall’Olio et al. submitted to A&A). In this region we resolve several protostellar cores embedded in a bright and dusty filamentary structure. The magnetic field morphology and strength in different cores is related to the evolutionary sequence of the star formation process which is occurring across the filament.


2019 ◽  
Vol 630 ◽  
pp. A54 ◽  
Author(s):  
M. T. Beltrán ◽  
M. Padovani ◽  
J. M. Girart ◽  
D. Galli ◽  
R. Cesaroni ◽  
...  

Context. Submillimeter Array (SMA) 870 μm polarization observations of the hot molecular core G31.41+0.31 revealed one of the clearest examples up to date of an hourglass-shaped magnetic field morphology in a high-mass star-forming region. Aims. To better establish the role that the magnetic field plays in the collapse of G31.41+0.31, we carried out Atacama Large Millimeter/ submillimeter Array (ALMA) observations of the polarized dust continuum emission at 1.3 mm with an angular resolution four times higher than that of the previous (sub)millimeter observations to achieve an unprecedented image of the magnetic field morphology. Methods. We used ALMA to perform full polarization observations at 233 GHz (Band 6). The resulting synthesized beam is 0′′.28×0′′.20 which, at the distance of the source, corresponds to a spatial resolution of ~875 au. Results. The observations resolve the structure of the magnetic field in G31.41+0.31 and allow us to study the field in detail. The polarized emission in the Main core of G31.41+0.41is successfully fit with a semi-analytical magnetostatic model of a toroid supported by magnetic fields. The best fit model suggests that the magnetic field is well represented by a poloidal field with a possible contribution of a toroidal component of ~10% of the poloidal component, oriented southeast to northwest at approximately −44° and with an inclination of approximately −45°. The magnetic field is oriented perpendicular to the northeast to southwest velocity gradient detected in this core on scales from 103 to 104 au. This supports the hypothesis that the velocity gradient is due to rotation of the core and suggests that such a rotation has little effect on the magnetic field. The strength of the magnetic field estimated in the central region of the core with the Davis–Chandrasekhar-Fermi method is ~8–13 mG and implies that the mass-to-flux ratio in this region is slightly supercritical. Conclusions. The magnetic field in G31.41+0.31 maintains an hourglass-shaped morphology down to scales of <1000 au. Despite the magnetic field being important in G31.41+0.31, it is not enough to prevent fragmentation and collapse of the core, as demonstrated by the presence of at least four sources embedded in the center of the core.


1990 ◽  
Vol 140 ◽  
pp. 318-318
Author(s):  
A.I. Gomez De Castro

Serpens is a region of low mass star formation where the magnetic field seems to play a fundamental role. The major axis of the Serpens outflows are aligned with the magnetic field. The most outstanding object in the region is the Serpens Reflection Nebula, SRN. This is characterized by a rather complex bipolar structure with several knots of gas and dust embedded in both nebular lobes. The western lobe is directed out of the cloud toward the observer. The SRN is illuminated by the PMS star Serpens/SVS 2. The star is surrounded by a dust disk; the polarization pattern of the disk can be interpreted as produced by dust grains aligned by the magnetic field frozen-in with the disk.


2017 ◽  
Vol 13 (S336) ◽  
pp. 215-218
Author(s):  
Ciriaco Goddi ◽  
Gabriele Surcis

AbstractThe Turner-Welch Object in the W3(OH) high-mass star forming complex drives a synchrotron jet, which is quite exceptional for a high-mass protostar, and is associated with a strongly polarized water maser source, W3(H2O), making it an optimal target to investigate the role of magnetic fields on the innermost scales of protostellar disk-jet systems. We report here full polarimetric VLBA observations of water masers. The linearly polarized emission from water masers provides clues on the orientation of the local magnetic field, while the measurement of the Zeeman splitting from circular polarization provides its strength. By combining the information on the measured orientation and strength of the magnetic field with the knowledge of the maser velocities, we infer that the magnetic field evolves from having a dominant component parallel to the outflow velocity in the pre-shock gas (with field strengths of the order of a few tens of mG), to being mainly dominated by the perpendicular component (of order of a few hundred of mG) in the post-shock gas where the water masers are excited. The general implication is that in the undisturbed (i.e. not-shocked) circumstellar gas, the flow velocities would follow closely the magnetic field lines, while in the shocked gas the magnetic field would be re-configured to be parallel to the shock front as a consequence of gas compression.


2019 ◽  
Vol 626 ◽  
pp. A36 ◽  
Author(s):  
D. Dall’Olio ◽  
W. H. T. Vlemmings ◽  
M. V. Persson ◽  
F. O. Alves ◽  
H. Beuther ◽  
...  

Context. The role of magnetic fields during the formation of high-mass stars is not yet fully understood, and the processes related to the early fragmentation and collapse are as yet largely unexplored. The high-mass star forming region G9.62+0.19 is a well known source, presenting several cores at different evolutionary stages. Aims. We seek to investigate the magnetic field properties at the initial stages of massive star formation. We aim to determine the magnetic field morphology and strength in the high-mass star forming region G9.62+0.19 to investigate its relation to the evolutionary sequence of the cores. Methods. We made use of Atacama Large Millimeter Array (ALMA) observations in full polarisation mode at 1 mm wavelength (Band 7) and we analysed the polarised dust emission. We estimated the magnetic field strength via the Davis–Chandrasekhar–Fermi and structure function methods. Results. We resolve several protostellar cores embedded in a bright and dusty filamentary structure. The polarised emission is clearly detected in six regions: two in the northern field and four in the southern field. Moreover the magnetic field is orientated along the filament and appears perpendicular to the direction of the outflows. The polarisation vectors present ordered patterns and the cores showing polarised emission are less fragmented. We suggest an evolutionary sequence of the magnetic field, and the less evolved hot core exhibits a stronger magnetic field than the more evolved hot core. An average magnetic field strength of the order of 11 mG was derived, from which we obtain a low turbulent-to-magnetic energy ratio, indicating that turbulence does not significantly contribute to the stability of the clump. We report a detection of linear polarisation from thermal line emission, probably from methanol or carbon dioxide, and we tentatively compared linear polarisation vectors from our observations with previous linearly polarised OH masers observations. We also compute the spectral index, column density, and mass for some of the cores. Conclusions. The high magnetic field strength and smooth polarised emission indicate that the magnetic field could play an important role in the fragmentation and the collapse process in the star forming region G9.62+019 and that the evolution of the cores can be magnetically regulated. One core shows a very peculiar pattern in the polarisation vectors, which can indicate a compressed magnetic field. On average, the magnetic field derived by the linear polarised emission from dust, thermal lines, and masers is pointing in the same direction and has consistent strength.


Author(s):  
Tomomi Shimoikura ◽  
Kazuhito Dobashi ◽  
Asha Hirose ◽  
Fumitaka Nakamura ◽  
Yoshito Shimajiri ◽  
...  

Abstract A survey of molecular cores covering the infrared dark cloud known as the M 17 southwest extension (M 17 SWex) has been carried out with the 45 m Nobeyama Radio Telescope. Based on the N2H+ (J = 1–0) data obtained, we have identified 46 individual cores whose masses are in the range from 43 to $3026\, {M}_{\odot }$. We examined the relationship between the physical parameters of the cores and those of young stellar objects (YSOs) associated with the cores found in the literature. The comparison of the virial mass and the core mass indicates that most of the cores can be gravitationally stable if we assume a large external pressure. Among the 46 cores, we found four massive cores with YSOs. They have large masses of $\gtrsim 1000\, M_{\odot }$ and line widths of $\gtrsim 2.5\:$km s−1 which are similar to those of clumps forming high-mass stars. However, previous studies have shown that there is no active massive star formation in this region. Recent measurements of near-infrared polarization imply that the magnetic field around M 17 SWex is likely to be strong enough to support the cores against self-gravity. We therefore suggest that the magnetic field may prevent the cores from collapsing, causing the low level of massive star formation in M 17 SWex.


2020 ◽  
Vol 640 ◽  
pp. A111
Author(s):  
C. Arce-Tord ◽  
F. Louvet ◽  
P. C. Cortes ◽  
F. Motte ◽  
C. L. H. Hull ◽  
...  

Aims. It has been proposed that the magnetic field, which is pervasive in the interstellar medium, plays an important role in the process of massive star formation. To better understand the impact of the magnetic field at the pre- and protostellar stages, high-angular resolution observations of polarized dust emission toward a large sample of massive dense cores are needed. We aim to reveal any correlation between the magnetic field orientation and the orientation of the cores and outflows in a sample of protostellar dense cores in the W43-MM1 high-mass star-forming region. Methods. We used the Atacama Large Millimeter Array in Band 6 (1.3 mm) in full polarization mode to map the polarized emission from dust grains at a physical scale of ~2700 au. We used these data to measure the orientation of the magnetic field at the core scale. Then, we examined the relative orientations of the core-scale magnetic field, of the protostellar outflows, and of the major axis of the dense cores determined from a 2D Gaussian fit in the continuum emission. Results. We find that the orientation of the dense cores is not random with respect to the magnetic field. Instead, the dense cores are compatible with being oriented 20–50° with respect to the magnetic field. As for the outflows, they could be oriented 50–70° with respect to the magnetic field, or randomly oriented with respect to the magnetic field, which is similar to current results in low-mass star-forming regions. Conclusions. The observed alignment of the position angle of the cores with respect to the magnetic field lines shows that the magnetic field is well coupled with the dense material; however, the 20–50° preferential orientation contradicts the predictions of the magnetically-controlled core-collapse models. The potential correlation of the outflow directions with respect to the magnetic field suggests that, in some cases, the magnetic field is strong enough to control the angular momentum distribution from the core scale down to the inner part of the circumstellar disks where outflows are triggered.


Sign in / Sign up

Export Citation Format

Share Document