scholarly journals CHIME/FRB Catalog 1 Results: Statistical Cross-correlations with Large-scale Structure

2021 ◽  
Vol 922 (1) ◽  
pp. 42
Author(s):  
Masoud Rafiei-Ravandi ◽  
Kendrick M. Smith ◽  
Dongzi Li ◽  
Kiyoshi W. Masui ◽  
Alexander Josephy ◽  
...  

Abstract The CHIME/FRB Project has recently released its first catalog of fast radio bursts (FRBs), containing 492 unique sources. We present results from angular cross-correlations of CHIME/FRB sources with galaxy catalogs. We find a statistically significant (p-value ∼ 10−4, accounting for look-elsewhere factors) cross-correlation between CHIME FRBs and galaxies in the redshift range 0.3 ≲ z ≲ 0.5, in three photometric galaxy surveys: WISE × SCOS, DESI-BGS, and DESI-LRG. The level of cross-correlation is consistent with an order-one fraction of the CHIME FRBs being in the same dark matter halos as survey galaxies in this redshift range. We find statistical evidence for a population of FRBs with large host dispersion measure (∼400 pc cm−3) and show that this can plausibly arise from gas in large halos (M ∼ 1014 M ⊙), for FRBs near the halo center (r ≲ 100 kpc). These results will improve in future CHIME/FRB catalogs, with more FRBs and better angular resolution.

Author(s):  
Ellie Kitanidis ◽  
Martin White

Abstract Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between DESI-like luminous red galaxies (LRGs) selected from DECaLS imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of S/N = 27.2 over scales ℓmin = 30, ℓmax = 1000. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faint limit as s = 0.999 ± 0.015, and find corresponding corrections on the order of a few percent for $C^{\kappa g}_{\ell }, C^{gg}_{\ell }$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at zeff. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.


2017 ◽  
Vol 839 (2) ◽  
pp. L25 ◽  
Author(s):  
Yuan-Pei Yang ◽  
Rui Luo ◽  
Zhuo Li ◽  
Bing Zhang

2018 ◽  
Vol 31 (5-6) ◽  
pp. 227-233
Author(s):  
Weitao Wang ◽  
◽  
Baoshan Wang ◽  
Xiufen Zheng ◽  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550044 ◽  
Author(s):  
CAN-ZHONG YAO ◽  
JI-NAN LIN ◽  
XU-ZHOU ZHENG

Based on cross-correlation algorithm, we analyze the correlation property of warehouse-out quantity of different warehouses, respectively, and different products of each warehouse. Our study identifies that significant cross-correlation relationship for warehouse-out quantity exists among different warehouses and different products of a warehouse. Further, we take multifractal detrended cross-correlation analysis for warehouse-out quantity among different warehouses and different products of a warehouse. The results show that for the warehouse-out behaviors of total amount, different warehouses and different products of a warehouse significantly follow multifractal property. Specifically for each warehouse, the coupling relationships of rebar and wire rod reveal long-term memory characteristics, no matter for large fluctuation or small one. The cross-correlation effect on long-range memory property among warehouses probably has less to do with product types,and the long-term memory of YZ warehouse is greater than others especially in total amount and wire rod product. Finally, we shuffle and surrogate data to explore the source of multifractal cross-correlation property in logistics system. Taking the total amount of warehouse-out quantity as example, we confirm that the fat-tail distribution of warehouse-out quantity sequences is the main factor for multifractal cross-correlation. Through comparing the performance of the multifractal detrended cross-correlation analysis (MF-DCCA), centered multifractal detrending moving average cross-correlation analysis (MF-X-DMA) algorithms, the forward and backward MF-X-DMA algorithms, we find that the forward and backward MF-X-DMA algorithms exhibit a better performance than the other ones.


Author(s):  
P. J. Bryanston-Cross ◽  
J. J. Camus

A simple technique has been developed which samples the dynamic image plane information of a schlieren system using a digital correlator. Measurements have been made in the passages and in the wakes of transonic turbine blades in a linear cascade. The wind tunnel runs continuously and has independently variable Reynolds and Mach number. As expected, strongly correlated vortices were found in the wake and trailing edge region at 50 KHz. Although these are strongly coherent we show that there is only limited cross-correlation from wake to wake over a Mach no. range M = 0.5 to 1.25 and variation of Reynolds number from 3 × 105 to 106. The trailing edge fluctuation cross correlations were extended both upstream and downstream and preliminary measurements indicate that this technique can be used to obtain information on wake velocity. The vortex frequency has also been measured over the same Mach number range for two different cascades. The results have been compared with high speed schlieren photographs.


1970 ◽  
Vol 41 (2) ◽  
pp. 283-325 ◽  
Author(s):  
Leslie S. G. Kovasznay ◽  
Valdis Kibens ◽  
Ron F. Blackwelder

The outer intermittent region of a fully developed turbulent boundary layer with zero pressure gradient was extensively explored in the hope of shedding some light on the shape and motion of the interface separating the turbulent and non-turbulent regions as well as on the nature of the related large-scale eddies within the turbulent regime. Novel measuring techniques were devised, such as conditional sampling and conditional averaging, and others were turned to new uses, such as reorganizing in map form the space-time auto- and cross-correlation data involving both the U and V velocity components as well as I, the intermittency function. On the basis of the new experimental results, a conceptual model for the development of the interface and for the entrainment of new fluid is proposed.


2012 ◽  
Vol 8 (S295) ◽  
pp. 105-108
Author(s):  
William G. Hartley ◽  
Omar Almaini ◽  
Alice Mortlock ◽  
Chris Conselice ◽  

AbstractWe use the UKIDSS Ultra-Deep Survey, the deepest degree-scale near-infrared survey to date, to investigate the clustering of star-forming and passive galaxies to z ~ 3.5. Our new measurements include the first determination of the clustering for passive galaxies at z > 2, which we achieve using a cross-correlation technique. We find that passive galaxies are the most strongly clustered, typically hosted by massive dark matter halos with Mhalo > 1013 M⊙ irrespective of redshift or stellar mass. Our findings are consistent with models in which a critical halo mass determines the transition from star-forming to passive galaxies.


Author(s):  
T. M. O. Franzen ◽  
N. Hurley-Walker ◽  
S. V. White ◽  
P. J. Hancock ◽  
N. Seymour ◽  
...  

Abstract We present the South Galactic Pole (SGP) data release from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. These data combine both years of GLEAM observations at 72–231 MHz conducted with the Murchison Widefield Array (MWA) and cover an area of 5 113 $\mathrm{deg}^{2}$ centred on the SGP at $20^{\mathrm{h}} 40^{\mathrm{m}} < \mathrm{RA} < 05^{\mathrm{h}} 04^{\mathrm{m}}$ and $-48^{\circ} < \mathrm{Dec} < -2^{\circ} $ . At 216 MHz, the typical rms noise is ${\approx}5$ mJy beam–1 and the angular resolution ${\approx}2$ arcmin. The source catalogue contains a total of 108 851 components above $5\sigma$ , of which 77% have measured spectral indices between 72 and 231 MHz. Improvements to the data reduction in this release include the use of the GLEAM Extragalactic catalogue as a sky model to calibrate the data, a more efficient and automated algorithm to deconvolve the snapshot images, and a more accurate primary beam model to correct the flux scale. This data release enables more sensitive large-scale studies of extragalactic source populations as well as spectral variability studies on a one-year timescale.


2020 ◽  
Vol 65 (1-2) ◽  
pp. 27-34
Author(s):  
Sz. Kelemen ◽  
◽  
L. Varga ◽  
Z. Néda ◽  
◽  
...  

"The two-body cross-correlation for the diffusive motion of colloidal nano-spheres is experimentally investigated. Polystyrene nano-spheres were used in a very low concentration suspension in order to minimize the three- or more body collective effects. Beside the generally used longitudinal and transverse component correlations we investigate also the Pearson correlation in the magnitude of the displacements. In agreement with previous studies we find that the longitudinal and transverse component correlations decay as a function of the inter-particle distance following a power-law trend with an exponent around -2. The Pearson correlation in the magnitude of the displacements decay also as a power-law with an exponent around -1. Keywords: colloidal particles, Brownian motion, cross-correlation. "


Sign in / Sign up

Export Citation Format

Share Document