scholarly journals A Late-time Galaxy-targeted Search for the Radio Counterpart of GW190814

2021 ◽  
Vol 923 (1) ◽  
pp. 66
Author(s):  
K. D. Alexander ◽  
G. Schroeder ◽  
K. Paterson ◽  
W. Fong ◽  
P. Cowperthwaite ◽  
...  

Abstract GW190814 was a compact object binary coalescence detected in gravitational waves by Advanced LIGO and Advanced Virgo that garnered exceptional community interest due to its excellent localization and the uncertain nature of the binary’s lighter-mass component (either the heaviest known neutron star, or the lightest known black hole). Despite extensive follow-up observations, no electromagnetic counterpart has been identified. Here, we present new radio observations of 75 galaxies within the localization volume at Δt ≈ 35–266 days post-merger. Our observations cover ∼32% of the total stellar luminosity in the final localization volume and extend to later timescales than previously reported searches, allowing us to place the deepest constraints to date on the existence of a radio afterglow from a highly off-axis relativistic jet launched during the merger (assuming that the merger occurred within the observed area). For a viewing angle of ∼46° (the best-fit binary inclination derived from the gravitational wave signal) and assumed electron and magnetic field energy fractions of ϵ e = 0.1 and ϵ B = 0.01, we can rule out a typical short gamma-ray burst-like Gaussian jet with an opening angle of 15° and isotropic-equivalent kinetic energy 2 × 1051 erg propagating into a constant-density medium n ≳ 0.1 cm−3. These are the first limits resulting from a galaxy-targeted search for a radio counterpart to a gravitational wave event, and we discuss the challenges—and possible advantages—of applying similar search strategies to future events using current and upcoming radio facilities.

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 104
Author(s):  
Jie-Shuang Wang ◽  
Liang-Duan Liu

Precursor emissions are found in some short gamma-ray bursts (SGRBs). In this paper, we review the theories and observations of the SGRB precursor and discuss its prospect as an electromagnetic counterpart of the gravitational wave event produced by neutron star (NS) mergers. The observed luminosity, spectrum, and duration of precursors are explained by the magnetospheric interaction model during the inspiral or the cocoon/jet shock breakout model during the jet propagation. In general, these two models predict that the precursor will be weaker than the main GRB, but will be of a larger opening angle, which makes it an advantageous gamma-ray counterpart for NS mergers in the local Universe, especially for NS - black hole mergers with very low mass ratios, in which the main GRBs are not expected. The joint observation of the precursor, SGRB, and gravitational wave will help to reveal the jet launch mechanism and post-merger remnant.


2018 ◽  
Vol 614 ◽  
pp. A29 ◽  
Author(s):  
J. Greiner ◽  
J. Bolmer ◽  
M. Wieringa ◽  
A. J. van der Horst ◽  
D. Petry ◽  
...  

Context. Deriving physical parameters from gamma-ray burst (GRB) afterglow observations remains a challenge, even 20 years after the discovery of afterglows. The main reason for the lack of progress is that the peak of the synchrotron emission is in the sub-mm range, thus requiring radio observations in conjunction with X-ray/optical/near-infrared data in order to measure the corresponding spectral slopes and consequently remove the ambiguity with respect to slow vs. fast cooling and the ordering of the characteristic frequencies. Aims. We have embarked on a multifrequency, multi-epoch observing campaign to obtain sufficient data for a given GRB that allows us to test the simplest version of the fireball afterglow model. Methods. We observed GRB 151027B, the 1000th Swift-detected GRB, with GROND in the optical–near-IR, ALMA in the sub-millimeter, ATCA in the radio band; we combined this with public Swift/XRT X-ray data. Results. While some observations at crucial times only return upper limits or surprising features, the fireball model is narrowly constrained by our data set, and allows us to draw a consistent picture with a fully determined parameter set. Surprisingly, we find rapid, large-amplitude flux density variations in the radio band which are extreme not only for GRBs, but generally for any radio source. We interpret them as scintillation effects, though their extreme nature requires the scattering screen to be at a much smaller distance than usually assumed, multiple screens, or a combination of the two. Conclusions. The data are consistent with the simplest fireball scenario for a blast wave moving into a constant-density medium, and slow-cooling electrons. All fireball parameters are constrained at or better than a factor of 2, except for the density and the fraction of the energy in the magnetic field which has a factor of 10 uncertainty in both directions.


2014 ◽  
Vol 789 (1) ◽  
pp. 65 ◽  
Author(s):  
Daisuke Yonetoku ◽  
Takashi Nakamura ◽  
Tatsuya Sawano ◽  
Keitaro Takahashi ◽  
Asuka Toyanago

2016 ◽  
Vol 12 (S324) ◽  
pp. 66-69
Author(s):  
Gavin P. Lamb ◽  
Shiho Kobayashi

AbstractCompact binary mergers, with neutron stars or neutron star and black-hole components, are thought to produce various electromagnetic counterparts: short gamma-ray bursts (GRBs) from ultra-relativistic jets followed by broadband afterglow; semi-isotropic kilonova from radioactive decay of r-process elements; and late time radio flares; etc. If the jets from such mergers follow a similar power-law distribution of Lorentz factors as other astrophysical jets then the population of merger jets will be dominated by low-Γ values. The prompt gamma-rays associated with short GRBs would be suppressed for a low-Γ jet and the jet energy will be released as X-ray/optical/radio transients when a shock forms in the ambient medium. Using Monte Carlo simulations, we study the properties of such transients as candidate electromagnetic counterparts to gravitational wave sources detectable by LIGO/Virgo. Approximately 78% of merger-jets result in failed GRB with optical peaks 14-22 magnitude and an all-sky rate of 2-3 per year.


2016 ◽  
Vol 93 (12) ◽  
Author(s):  
Reetanjali Moharana ◽  
Soebur Razzaque ◽  
Nayantara Gupta ◽  
Peter Mészáros

2018 ◽  
Vol 168 ◽  
pp. 01006
Author(s):  
J. A. Rueda ◽  
R. Ruffini ◽  
J. F. Rodriguez ◽  
M. Muccino ◽  
Y. Aimuratov ◽  
...  

We have sub-classified short and long-duration gamma-ray bursts (GRBs) into seven families according to the binary nature of their progenitors. Short GRBs are produced in mergers of neutron-star binaries (NS-NS) or neutron star-black hole binaries (NS-BH). Long GRBs are produced via the induced gravitational collapse (IGC) scenario occurring in a tight binary system composed of a carbon-oxygen core (COcore) and a NS companion. The COcore explodes as type Ic supernova (SN) leading to a hypercritical accretion process onto the NS: if the accretion is sufficiently high the NS reaches the critical mass and collapses forming a BH, otherwise a massive NS is formed. Therefore long GRBs can lead either to NS-BH or to NS-NS binaries depending on the entity of the accretion. We discuss for the above compact-object binaries: 1) the role of the NS structure and the nuclear equation of state; 2) the occurrence rates obtained from X and gamma-rays observations; 3) the predicted annual number of detections by the Advanced LIGO interferometer of their gravitational-wave emission.


2017 ◽  
Vol 848 (2) ◽  
pp. L15 ◽  
Author(s):  
V. Savchenko ◽  
C. Ferrigno ◽  
E. Kuulkers ◽  
A. Bazzano ◽  
E. Bozzo ◽  
...  

2022 ◽  
Vol 924 (1) ◽  
pp. 16
Author(s):  
K. P. Mooley ◽  
B. Margalit ◽  
C. J. Law ◽  
D. A. Perley ◽  
A. T. Deller ◽  
...  

Abstract We present new radio and optical data, including very-long-baseline interferometry, as well as archival data analysis, for the luminous, decades-long radio transient FIRST J141918.9+394036. The radio data reveal a synchrotron self-absorption peak around 0.3 GHz and a radius of around 1.3 mas (0.5 pc) 26 yr post-discovery, indicating a blastwave energy ∼5 × 1050 erg. The optical spectrum shows a broad [O iii]λ4959,5007 emission line that may indicate collisional excitation in the host galaxy, but its association with the transient cannot be ruled out. The properties of the host galaxy are suggestive of a massive stellar progenitor that formed at low metallicity. Based on the radio light curve, blastwave velocity, energetics, nature of the host galaxy and transient rates, we find that the properties of J1419+3940 are most consistent with long gamma-ray burst (LGRB) afterglows. Other classes of (optically discovered) stellar explosions as well as neutron star mergers are disfavored, and invoking any exotic scenario may not be necessary. It is therefore likely that J1419+3940 is an off-axis LGRB afterglow (as suggested by Law et al. and Marcote et al.), and under this premise the inverse beaming fraction is found to be f b − 1 ≃ 280 − 200 + 700 , corresponding to an average jet half-opening angle < θ j > ≃ 5 − 2 + 4 degrees (68% confidence), consistent with previous estimates. From the volumetric rate we predict that surveys with the Very Large Array, Australian Square Kilometre Array Pathfinder, and MeerKAT will find a handful of J1419+3940-like events over the coming years.


2019 ◽  
Vol 490 (4) ◽  
pp. 4935-4943 ◽  
Author(s):  
Markus Ahlers ◽  
Lea Halser

ABSTRACT We investigate the expected high-energy neutrino fluence from internal shocks produced in the relativistic outflow of gamma-ray bursts. Previous model predictions have primarily focused on on-axis observations of uniform jets. Here, we present a generalization to account for arbitrary viewing angles and jet structures. Based on this formalism, we provide an improved scaling relation that expresses off-axis neutrino fluences in terms of on-axis model predictions. We also find that the neutrino fluence from structured jets can exhibit a strong angular dependence relative to that of gamma-rays and can be far more extended. We examine this behaviour in detail for the recent short gamma-ray burst GRB 170817A observed in coincidence with the gravitational wave event GW170817.


Sign in / Sign up

Export Citation Format

Share Document