scholarly journals The Multi-messenger Matrix: The Future of Neutron Star Merger Constraints on the Nuclear Equation of State

2019 ◽  
Vol 880 (1) ◽  
pp. L15 ◽  
Author(s):  
Ben Margalit ◽  
Brian D. Metzger
2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


Author(s):  
JÜRGEN SCHAFFNER-BIELICH ◽  
IRINA SAGERT ◽  
MIRJAM WIETOSKA ◽  
CHRISTIAN STURM

2017 ◽  
Vol 45 ◽  
pp. 1760035
Author(s):  
Richard D. Mellinger ◽  
William Spinella ◽  
Fridolin Weber ◽  
Gustavo A. Contrera ◽  
Milva Orsaria

In this paper, we discuss the impact of rotation on the particle composition of rotating neutron stars (pulsars). Particular emphasis is put on the formation of quark matter during stellar spin-down, driven by continuous gravitational compression. Our study is based on modern models for the nuclear equation of state whose parameters are tightly constrained by nuclear data, neutron star masses, and the latest estimates of neutron star radii.


2010 ◽  
Vol 19 (08n09) ◽  
pp. 1727-1733 ◽  
Author(s):  
Z. H. LI ◽  
U. LOMBARDO ◽  
H.-J. SCHULZE ◽  
W. ZUO

Microscopic three-nucleon force consistent with the Bonn B two-nucleon potential is constructed, which includes Δ(1232), Roper, and nucleon-antinucleon excitation contributions. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined. At the high densities, the nuclear equation of state and the symmetry energy are calculated. The corresponding neutron star mass-radius relations are presented.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 183
Author(s):  
Alkiviadis Kanakis-Pegios ◽  
Polychronis S. Koliogiannis ◽  
Charalampos C. Moustakidis

On 14 August 2019, the LIGO/Virgo collaboration observed a compact object with mass ∼2.59−0.09+0.08M⊙, as a component of a system where the main companion was a black hole with mass ∼23M⊙. A scientific debate initiated concerning the identification of the low mass component, as it falls into the neutron star–black hole mass gap. The understanding of the nature of GW190814 event will offer rich information concerning open issues, the speed of sound and the possible phase transition into other degrees of freedom. In the present work, we made an effort to probe the nuclear equation of state along with the GW190814 event. Firstly, we examine possible constraints on the nuclear equation of state inferred from the consideration that the low mass companion is a slow or rapidly rotating neutron star. In this case, the role of the upper bounds on the speed of sound is revealed, in connection with the dense nuclear matter properties. Secondly, we systematically study the tidal deformability of a possible high mass candidate existing as an individual star or as a component one in a binary neutron star system. As the tidal deformability and radius are quantities very sensitive on the neutron star equation of state, they are excellent counters on dense matter properties. We conjecture that similar isolated neutron stars or systems may exist in the universe and their possible future observation will shed light on the maximum neutron star mass problem.


Sign in / Sign up

Export Citation Format

Share Document