scholarly journals Drug resistance, serotypes, and phylogenetic groups among uropathogenic Escherichia coli including O25-ST131 in Mexico City

2011 ◽  
Vol 5 (12) ◽  
pp. 840-849 ◽  
Author(s):  
José Molina-López ◽  
Gerardo Aparicio-Ozores ◽  
Rosa María Ribas-Aparicio ◽  
Sandra Gavilanes-Parra ◽  
María Elena Chávez-Berrocal ◽  
...  

Introduction: The increasing prevalence of uropathogenic Escherichia coli (UPEC) strains resistant to multiple antibiotics complicates the treatment of urinary tract infections (UTIs). This study aimed to analyze the antimicrobial resistance, serotypes, and phylogenetic groups among strains of E. coli isolated from outpatients with UTIs in Mexico City. Methodology: A total of 119 E. coli isolates were recovered from urine samples from outpatients with clinical diagnosis of uncomplicated UTIs from 2004 to 2007. The serotype was assessed by agglutination in microtiter plates; susceptibility to antimicrobials was determined by the disk diffusion method. Clone O25-ST131 and phylogenetic groups of E. coli strains were tested by methods based on PCR multiplex. Results: The predominant serotype was O25:H4 (21.2%). Resistance to antibiotics was ampicillin (83.7%); piperacillin (53.8%); the fluoroquinolone group (55.5-60.6%), and trimethoprim/sulfamethoxazole (TMP/SMX) (56.4%). Additionally, 36 (30.2%) isolates were multidrug-resistant and 13 of these 36 strains were identified as E. coli O25-ST131 clone by an allele-specific PCR-based assay. Phylogenetic analysis showed that 15 of 17 isolates with serotype O25:H4 belonged to group B2. Conclusions: This is the first report that establishes the presence in Mexico of the O25-ST131 clonal group of E. coli, which has been associated with multidrug-resistance and with high virulence potential. The spread of this clone in Mexico should be monitored closely. We found a correlation between serotype O25:H4 and multidrug resistance in UPEC strains. Our results indicate that the use of ampicillin, fluoroquinolones, and TMP/SMX should be reviewed when selecting empirical therapy for UTIs.

2017 ◽  
Vol 5 (4) ◽  
pp. 100-105 ◽  
Author(s):  
Mohadese Amiri ◽  
Maziar Jajarmi ◽  
Reza Ghanbarpour

Background: Antibiotic resistance (AR) is an important challenge in prevention, treatment and control of infectious diseases and is a public health threat for human. Escherichia coli strains are the major causes of urinary tract infections (UTIs). Objective: This research aimed to determine prevalence of resistance to quinolone and fluoroquinolone antibiotics and screen qnr genes among E. coli isolates from UTIs. Materials and Methods: A total of 105 E. coli isolates were obtained from UTI cases in Bojnord city (northeast of Iran) and confirmed by biochemical tests. All strains were studied to determine their resistance to 3 antibiotics including ciprofloxacin, nalidixic acid, and levofloxacin via disk diffusion method. Moreover, the frequency of qnrA, qnrB and qnrS genes and phylogroups was studied by conventional Polymerase chain reaction (PCR). Results: In this study, prevalence of phenotypic AR to ciprofloxacin, nalidixic acid and levofloxacin was 47.6%, 44.8% and 38.1%, respectively. Three isolates were positive for qnrS and 1 isolate was positive for qnrA. Seven phylogenetic groups were also identified as follows: 18% A0, 6.7% A1, 7.6% B1, 1.9% B22, 23.8% B23, 15.3% D1 and 26.7% D2. Conclusion: Prevalence of qnr genes was very low; thus, other types of qnr and plasmid-mediated quinolone resistance genes were probably responsible for the resistance. Phenotypic AR to the 3 antibiotics was found in approximately half of E. coli strains. It is strongly recommended that antibiogram tests should be done before prescribing the ciprofloxacin, nalidixic acid and levofloxacin for UTIs.


2014 ◽  
Vol 8 (07) ◽  
pp. 818-822 ◽  
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei ◽  
Younes Soleimani-Asl

Introduction: Plasmid-mediated quinolone resistance, which complicates treatment, has been increasingly identified in Escherichia coli isolates worldwide. The purpose of this study was to identify the plasmid-mediated qnrA and qnrB genes among the quinolone-resistant Escherichia coli isolated from urinary tract infections in Iran. Methodology: A total of 140 Escherichia coli isolates were collected between March and October 2012 from urinary tract infections in Khorram Abad, Iran. All isolates were tested for quinoloe resistance using the disk diffusion method. Also, all quinolone-resistant isolates were screened for the presence of the qnrA and qnrB genes by polymerase chain reaction. Minimum inhibitory concentrations (MICs) of ciprofloxacin for the qnr-positive isolates were determined. Results: One hundred sixteen (82.8%) of 140 Escherichia coli isolates were nalidixic acid-resistant; among them, 14 (12.1%) and 9 (7.8%) were qnrA and qnrB-positive, respectively. Two quinolone-resistant isolates harbored both qnrA and qnrB. Among 63 ciprofloxacin-resistant isolates, 14 (22.2%) and 9 (14.3%) were found to carry qnrA and qnrB genes, respectively. The ciprofloxacin MIC range was 0.25–512 μg/mL for 23 qnr-positive Escherichia coli isolates, 18 of which had MICs values of 4–512 μg/mL. Conclusion: Our study shows that the frequency of plasmid-mediated quinolone resistance genes among E. coli isolates in Iran is high.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1828 ◽  
Author(s):  
Paul Katongole ◽  
Daniel Bulwadda Kisawuzi ◽  
Henry Kyobe Bbosa ◽  
David Patrick Kateete ◽  
Christine Florence Najjuka

Introduction: Uropathogenic Escherichia coli (UPEC) remains the most common cause of urinary tract infections (UTIs). They account for over 80-90% of all community-acquired and 30-50% of all hospital-acquired UTIs. E. coli strains have been found to belong to evolutionary origins known as phylogenetic groups. In 2013, Clermont classified E. coli strains into eight phylogenetic groups using the quadruplex PCR method. The aim of this study was to identify the phylogenetic groups of UPEC strains in Uganda using Clermont’s quadruplex PCR method and to assess their antibiotic susceptibility patterns in Uganda. Methods: In this cross-sectional study, 140 stored uropathogenic E. coli isolates from the Clinical Microbiology Laboratory, Department of Medical Microbiology, College of Health Sciences Makerere University were subjected to phylogenetic typing by a quadruplex PCR method. Antimicrobial susceptibility testing was performed by disk diffusion method according to Clinical & Laboratory Standards Institute (CLSI) guidelines. Phenotypic detection of extended-spectrum beta-lactamase, AmpC and carbapenemases was done according to CLSI guidelines and Laboratory SOPs. Results: Phylogenetic group B2 (40%) was the most predominant, followed by A (6.23%), clade I and II (5%), D and E (each 2.14%), B1 (1.43%) and F and C (each 0.71%). The most common resistant antibiotic was trimethoprim-sulphamethoxazole (90.71%) and the least was imipenem (1.43%). In total, 73.57% of isolates were multi-drug resistant (MDR). Antibiotic resistance was mainly detected in phylogenetic group B2 (54%). Conclusions: Our findings showed the high prevalence of MDR E. coli isolates, with the dominance of phylogenetic group B2. About 9% of E. coli isolates belonged to the newly described phylogroups C, E, F, and clade I and II.


2017 ◽  
Vol 11 (01) ◽  
pp. 51-57 ◽  
Author(s):  
Yandag Munkhdelger ◽  
Nyamaa Gunregjav ◽  
Altantsetseg Dorjpurev ◽  
Nishi Juniichiro ◽  
Jav Sarantuya

Introduction: The severity of urinary tract infection (UTI) produced by uropathogenic Escherichia coli (UPEC) is due to the expression of a wide spectrum of virulence genes. E. coli strains were divided into four phylogenetic groups (A, B1, B2 and D) based on their virulence genes. The present study aimed to assess the relationship between virulence genes, phylogenetic groups, and antibiotic resistance of UPEC. Methodology: A total of 148 E. coli were tested for antimicrobial resistance against 10 drugs using the disk diffusion method. The isolates were screened by polymerase chain reaction (PCR) for detection of virulence genes and categorized into the four major phylogenetic groups. Results: Phylogenetic group B2 was predominant (33.8%), followed by D (28.4%), A (19.6), and B1 (18.2%). A higher prevalence of fimH (89.9%), fyuA (70.3%), traT (66.2%), iutA (62.2%), kpsMTII (58.8%), and aer (56.1%) genes were found in UPEC, indicating a putative role of adhesins, iron acquisition systems, and protectins that are main cause of UTIs. The most common antibiotic resistance was to cephalotin (85.1%), ampicillin (78.4%) and the least to nitrofurantoin (5.4%) and imipenem (2%). In total, 93.9% of isolates were multidrug resistant (MDR). Conclusions: This study showed that group B2 and D were the predominant phylogenetic groups and virulence-associated genes were mostly distributed in these groups. The virulence genes encoding components of adhesins, iron acquisition systems, and protectins were highly prevalent among antibiotic-resistant UPEC. Although the majority of strains are MDR, nitrofurantoin is the drug of choice for treatment of UTI patients in Ulaanbaatar.


Medicina ◽  
2019 ◽  
Vol 55 (11) ◽  
pp. 733 ◽  
Author(s):  
Ruta Prakapaite ◽  
Frederic Saab ◽  
Rita Planciuniene ◽  
Vidmantas Petraitis ◽  
Thomas J. Walsh ◽  
...  

Background and Objectives: Uropathogenic Escherichia coli (UPEC) are common pathogens causing urinary tract infections (UTIs). We aimed to investigate the relationship among clinical manifestation, serogroups, phylogenetic groups, and antimicrobial resistance among UPEC. Materials and Methods: One-hundred Escherichia coli isolates recovered from urine and ureteral scrapings were used for the study. The prevalence of antimicrobial resistance was determined by using European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations. E. coli serogroups associated with UTI, as well as phylogenetic diversity were analyzed using multiplex PCR reactions. Results: Eighty-seven strains (87%) were isolated from females, while 13 (13%) from males. A high frequency of resistance to cephalosporins (43%) and fluoroquinolones (31%) was observed. Among UTI-associated serogroups O15 (32.8%), O22 (23.4%), and O25 (15.6%) were dominant and demonstrated elevated resistance rates. The E. coli phylogenetic group B2 was most common. These observations extended to pregnant patients with asymptomatic bacteriuria. Conclusions: Due to high rates of resistance, strategies using empirical therapy of second-generation cephalosporins and fluoroquinolones should be reconsidered in this population.


2020 ◽  
Author(s):  
Samane Mohebi ◽  
zahra Hashemizade ◽  
Mahtab Hadadi ◽  
Soudeh Kholdi ◽  
Kasra Javadi ◽  
...  

Abstract Background Asymptomatic bacteriuria is one of the common problems in pregnancy. Pyelonephritis, preterm labor and low birth weight infants have been associated with bacterial infection. Urinary tract infection (UTI) during pregnancy is frequently associated with complications. An observational cross-sectional study including investigated the prevalence of virulence genes, antimicrobial resistance, and its relationship with phylogenetic groups among E. coli strains isolated from pregnant women with asymptomatic bacteriuria who referred to Hafez hospital, Shiraz, Iran.Material and Methods A total of 300 urine samples were screened for Escherichia coli strains. Susceptibility testing was determined by the disk-diffusion method. The phylogenetic groups and 13 virulence genes were identified by PCR. ESBL and AmpC producing isolates were detected using phenotypic methods. PCR was used to identify the bla TEM , bla SHV and bla CTXM genes in ESBL and AmpC-positive isolates.Results Our results revealed that among 300 urine samples, 105 (35%) were positive for E. coli . The data showed that the highest and the lowest resistance rates were observed against nalidixic acid (82.1%), and imipenem (2.8%), respectively. The prevalence of ESBLs and AmpC-β-lactamase, in the E. coli isolates was 41% and 9.5% respectively. bla CTXM was the commonest genotype (93%). Phylogenetic group distribution was as follow: B1 2.8%, A 14.2%, B2 61.9%, and D 4.6%. Our result showed that most of the virulence genes belonged to group B2 and also several virulence genes such as hlyA , cnf-1 , and papGII genes were positively associated with group B2. Conclusion Among E. coli strains isolated from patients with UTIs, different features phylogroups, with special virulence factors, could cause severe infection. Awareness about the Virulence patterns distribution among Phylogenetic groups of UPEC could greatly aid in confine and prevent the development of lethal infection caused by these strains.


2020 ◽  
Author(s):  
Samane Mohebi ◽  
zahra Hashemizade ◽  
Mahtab Hadadi ◽  
Soudeh Kholdi ◽  
Kasra Javadi ◽  
...  

Abstract Background Asymptomatic bacteriuria is one of the common problems in pregnancy. Pyelonephritis, preterm labor and low birth weight infants have been associated with bacterial infection. Urinary tract infection (UTI) during pregnancy is frequently associated with complications. An observational cross-sectional study including investigated the prevalence of virulence genes, antimicrobial resistance, and its relationship with phylogenetic groups among E. coli strains isolated from pregnant women with asymptomatic bacteriuria who referred to Hafez hospital, Shiraz, Iran. Material and Methods A total of 300 urine samples were screened for Escherichia coli strains. Susceptibility testing was determined by the disk-diffusion method. The phylogenetic groups and 13 virulence genes were identified by PCR. ESBL and AmpC producing isolates were detected using phenotypic methods. PCR was used to identify the bla TEM , bla SHV and bla CTXM genes in ESBL and AmpC-positive isolates. Results Our results revealed that among 300 urine samples, 105 (35%) were positive for E. coli . The data showed that the highest and the lowest resistance rates were observed against nalidixic acid (82.1%), and imipenem (2.8%), respectively. The prevalence of ESBLs and AmpC-β-lactamase, in the E. coli isolates was 41% and 9.5% respectively. bla CTXM was the commonest genotype (93%). Phylogenetic group distribution was as follow: B1 2.8%, A 14.2%, B2 61.9%, and D 4.6%. Our result showed that most of the virulence genes belonged to group B2 and also several virulence genes such as hlyA , cnf-1 , and papGII genes were positively associated with group B2. Conclusion Among E. coli strains isolated from patients with UTIs, different features phylogroups, with special virulence factors, could cause severe infection. Awareness about the Virulence patterns distribution among Phylogenetic groups of UPEC could greatly aid in confine and prevent the development of lethal infection caused by these strains.


2020 ◽  
Vol 5 (4) ◽  
pp. 176
Author(s):  
Purity Z. Kubone ◽  
Koleka P. Mlisana ◽  
Usha Govinden ◽  
Akebe Luther King Abia ◽  
Sabiha Y. Essack

We investigated the phenotypic and genotypic antibiotic resistance, and clonality of uropathogenic Escherichia coli (UPEC) implicated in community-acquired urinary tract infections (CA-UTIs) in KwaZulu-Natal, South Africa. Mid-stream urine samples (n = 143) were cultured on selective media. Isolates were identified using the API 20E kit and their susceptibility to 17 antibiotics tested using the disk diffusion method. Extended-spectrum β-lactamases (ESBLs) were detected using ROSCO kits. Polymerase chain reaction (PCR) was used to detect uropathogenic E. coli (targeting the papC gene), and β-lactam (blaTEM/blaSHV-like and blaCTX-M) and fluoroquinolone (qnrA, qnrB, qnrS, gyrA, parC, aac(6’)-Ib-cr, and qepA) resistance genes. Clonality was ascertained using ERIC-PCR. The prevalence of UTIs of Gram-negative etiology among adults 18–60 years of age in the uMgungundlovu District was 19.6%. Twenty-six E. coli isolates were obtained from 28 positive UTI samples. All E. coli isolates were papC-positive. The highest resistance was to ampicillin (76.9%) and the lowest (7.7%) to amoxicillin/clavulanic acid and gentamycin. Four isolates were multidrug-resistant and three were ESBL-positive, all being CTX-M-positive but SHV-negative. The aac(6’)-Ib-cr and gyrA were the most detected fluoroquinolone resistance genes (75%). Isolates were clonally distinct, suggesting the spread of genetically diverse UPEC clones within the three communities. This study highlights the spread of genetically diverse antibiotic-resistant CA-UTI aetiologic agents, including multidrug-resistant ones, and suggests a revision of current treatment options for CA-UTIs in rural and urban settings.


2019 ◽  
Author(s):  
Ruta Prakapaite ◽  
Frederic Saab ◽  
Rita Planciuniene ◽  
Vidmantas Petraitis ◽  
Thomas J. Walsh ◽  
...  

Abstract Background Uropathogenic Escherichia coli (UPEC) are common pathogens causing urinary tract infections (UTIs). We aimed to investigate the relationship among clinical manifestation, serogroups, phylogenetic groups, and antimicrobial resistance among UPEC. Methods One-hundred Escherichia coli isolates recovered from urine and ureteral scrapings were used for the study. The prevalence of antimicrobial resistance was determined by using EUCAST recommendations. E. coli serogroups associated with UTI, as well as phylogenetic diversity was analysed using multiplex PCR reactions. Results Eighty-seven strains (87%) were isolated from females, while 13 (13%) from males. A high frequency of resistance to cephalosporins (43%) and fluoroquinolones (31%) was observed. Among UTI-associated serogroups, O15 (32.8%), O22 (23.4%), and O25 (15.6%) were dominant and demonstrated elevated resistance rates. The E. coli phylogenetic group B2 was most common. These observations extended to pregnant patients with asymptomatic bacteriuria. Conclusions Due to high rates of resistance, strategies using empirical therapy of second-generation cephalosporins and fluoroquinolones for treatment of UPEC infections should be reconsidered.


Sign in / Sign up

Export Citation Format

Share Document