scholarly journals Three Dimensional (3D) Echocardiography as a Tool of Left Ventricular Assessment in Children with Dilated Cardiomyopathy: Comparison to Cardiac MRI

2018 ◽  
Vol 6 (12) ◽  
pp. 2310-2315
Author(s):  
Nevin Mohamed Habeeb ◽  
Omneya Ibrahim Youssef ◽  
Waleed Mohamed Elguindy ◽  
Ahmed samir Ibrahim ◽  
Walaa Hamed Hussein

BACKGROUND: Left ventricular (LV) volumes and ejection fraction (EF) is Strong prognostic indicators for DCM. Cardiac MRI (CMRI) is a preferred technique for LV volumes and EF assessment due to high spatial resolution and complete volumetric datasets. Three-dimensional echocardiography is a promising new technique under investigations. AIM: Evaluate 3D echocardiography as a tool in LV assessment in DCM children about CMRI. PATIENTS AND METHODS: A group of 20 DCM children (LVdiastolic diameter < 2 Z score, LVEF < 35%) at Children s Hospital, Ain-Shams University (gp1) (mean age 6.6 years) were compared to 20 age and sex-matched children as controls (gp2). Patients were subjected to: clinical examination, conventional echocardiography, automated 3D LV quantification, 3D speckle tracking echocardiography (3D-STE) (VIVID E9 Vingmed, Norway) and CMRI (Philips Achieva Nova, 1.5 Tesla scanner) for LV end systolic volume (LVESV), LVend diastolic volume (LVEDV) that were indexed to body surface area, EF% and wall motion abnormalities assessment. RESUTS: No statistically significant difference was found between automated 3D LV quantification echocardiography, 3D-STE, and CMRI in ESV/BSA and EDV/BSA assessment (p = 1, 0.99 respectively), between automated LV quantification echocardiography and CMRI in EF% assessment (p = 0.99) and between CMRI and 3D-STE in LV Global hypokinesia detection (P = 0.255). As for segmental hypokinesia CMRI was more sensitive [45% of patients vs. 40%, (P = 0,036), basal septal hypokinesia 85% vs. 75%, (p = 0.045), mid septal hypokinesia 80% vs. 65%, (p = 0.012) and lateral wall hypokinesia 75% vs. 65%, (p = 0.028)]. CONCLUSION: Automated 3D LV quantification echocardiography and 3D-STE are reliable tools in LV volumetric and systolic function assessment about CMRIas a standard method. 3D speckle echocardiography is comparable to CMRI in global wall hypokinesia detection but less sensitive in segmental wall hypokinesia which mandates further studies.

Author(s):  
Fabian Strodka ◽  
Jana Logoteta ◽  
Roman Schuwerk ◽  
Mona Salehi Ravesh ◽  
Dominik Daniel Gabbert ◽  
...  

AbstractVentricular dysfunction is a well-known complication in single ventricle patients in Fontan circulation. As studies exclusively examining patients with a single left ventricle (SLV) are sparse, we assessed left ventricular (LV) function in SLV patients by using 2D-cardiovascular magnetic resonance (CMR) feature tracking (2D-CMR-FT) and 2D-speckle tracking echocardiography (2D-STE). 54 SLV patients (11.4, 3.1–38.1 years) and 35 age-matched controls (12.3, 6.3–25.8 years) were included. LV global longitudinal, circumferential and radial strain (GLS, GCS, GRS) and strain rate (GLSR, GCSR, GRSR) were measured using 2D-CMR-FT. LV volumes, ejection fraction (LVEF) and mass were determined from short axis images. 2D-STE was applied in patients to measure peak systolic GLS and GLSR. In a subgroup analysis, we compared double inlet left ventricle (DILV) with tricuspid atresia (TA) patients. The population consisted of 19 DILV patients, 24 TA patients and 11 patients with diverse diagnoses. 52 patients were in NYHA class I and 2 patients were in class II. Most SLV patients had a normal systolic function but median LVEF in patients was lower compared to controls (55.6% vs. 61.2%, p = 0.0001). 2D-CMR-FT demonstrated reduced GLS, GCS and GCSR values in patients compared to controls. LVEF correlated with GS values in patients (p < 0.05). There was no significant difference between GLS values from 2D-CMR-FT and 2D-STE in the patient group. LVEF, LV volumes, GS and GSR (from 2D-CMR-FT) were not significantly different between DILV and TA patients. Although most SLV patients had a preserved EF derived by CMR, our results suggest that, LV deformation and function may behave differently in SLV patients compared to healthy subjects.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
C Jenei ◽  
E Papp ◽  
M Clemens ◽  
Z Csanadi

Abstract Background In approximately 30-40% of cases, the left ventricular systolic function does not improve following cardiac resynchronization therapy (CRT; non-responders). Currently, the role of right ventricular (RV) systolic function is not yet completely clear in the background. Our aim was to assess the RV systolic function with 3D echocardiography in CRT patients. Methods We selected 19 patients who received CRT in our department between May and June 2017, and whose 1-year follow-up data were available. We characterized several 2D parameters of RV systolic function, such as RV free wall strain (RV GLSFW), annular s’ wave velocity (TDI s), tricuspid annulus plane systolic excursion (TAPSE), RV fractional area change (RV FAC). A number of 3D parameters were also assessed, such as RV ejection fraction (EF), end-diastolic (EDV) and end-systolic (ESV) volumes, using a dedicated RV analysis software. Moreover, we measured the LV EF and considered the patients "responder", when the LV EF improved with at least 10% after CRT implantation. Results From 19 patients, 12 was identified as responders (R) and 7 as non-responders (NR). No significant difference was seen in the mean age of patients in the two groups (NR: 68 ± 6 year; R: 67 ± 9 year, p = 0.76), however, the proportion of male individuals was higher in the NR group (8/12 vs. 1/7). The RV EF was higher in the R group (41 ± 8% vs.29 ± 10%; p = 0.012), while the EDV or ESV did not differ between the two groups. The RV GLSFW (–21.2 ± 7% vs.–13.9 ± 7%, p = 0.045) and the TAPSE (16.8 ± 5 mm vs.11.4 ± 3 mm, P = 0.03) values were significantly different between the two groups. Based on logistic regression analysis, the RV EF was an independent predictor of non-respondence. Conclusions The lower RV EF indicates non-respondence to CRT, however, it is not associated with RV dilation, i.e.adverse remodelling. These results suggest mechanical abnormality of RV function in the background of impaired EF.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
A Ilic ◽  
S Stojsic ◽  
J Papovic ◽  
M Stefanovic ◽  
D Grkovic ◽  
...  

Abstract Background It was recently showed that there is a difference between 3D and 2D evaluation of the left ventricular (LV) myocardial mass and cardiac function in gestational hypertension (GH) probably due to more pronounced heart shape changes in hypertensive pregnant women. It is also known that preeclampsia (PE) is associated with a deterioration in maternal cardiac function. Purpose: We were interested whether there was a difference in 3D morphological and functional parameters of the LV in relation to the blood pressure (BP) profile in GH, but also between GH and PE. Methods: 22 women and 55 with GH (28 with dipping pattern of BP, and 27 non-dippers) underwent 3D echocardiography and ambulatory blood pressure monitoring in the third trimester. LV mass index, LV volumes, SV index and parameters of systolic function of the LV: CO index, EF, longitudinal strain (LS), circumferential strain (CS), radial strain (RS) and area strain (AS) were estimated using 3D software. These three groups (PE, dippers and non-dippers) were each other"s control. Results: Groups did not differ in age and LV massi. SVi was significantly lower in non-dippers (p = 0,045) and PE (p = 0,031) compared with dippers, without significant difference between non-dippers and PE (p = 0,59). Similar results were obtained when we analyzed the EF in these three groups. COi was the lowest in PE (2,76 ± 0,3), compared with dippers (3,43 ± 0,5; p&lt; 0,0005), with significant difference between non-dippers (2,97 ± 0,4; p&lt; 0,0005) and dippers, and with a small difference between PE and non-dippers (p = 0,045). Evaluation of the systolic function by 3D strain, also showed that the systolic function was significantly lower in PE, but also in non-dippers compared to dippers (Table 1). Multivariate regression analysis revealed that nocturnal BP (p = 0,001; OR 1,106; 95% CI 1,029 - 1,142) and presence of proteinuria (p&lt; 0,0005; OR 7,2; 95% CI 1,896 – 36,5) strongly predict preterm delivery. Conclusions: Deterioration of 3D systolic function is more pronaunced in PE, but also in non-dipping pattern of BP in GH compared with dippers, without significant difference in 3D LV massi between groups. Values od 3D strain in groups Dippers Non-dippers PE p1 p2 p3 LS -18,62 -16,99 -16,91 p&lt; 0,0005 p&lt; 0,0005 ns CS -18,22 -16,22 -16,21 p&lt; 0,0005 p&lt; 0,0005 ns RS 52,85 48,3 48,1 p&lt; 0,0005 p&lt; 0,0005 ns AS -31,77 -27,67 -27,98 p&lt; 0,0005 p&lt; 0,0005 ns p1 - difference between dippers and non-dippers; p2 - difference between dippers and PE; p3 - difference between non-dippers and PE


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Mojdeh Mirmomen ◽  
Andrew E. Arai ◽  
Evrim B. Turkbey ◽  
Andrew J. Bradley ◽  
Julie C. Sapp ◽  
...  

AbstractIn this work, we sought to delineate the prevalence of cardiothoracic imaging findings of Proteus syndrome in a large cohort at our institution. Of 53 individuals with a confirmed diagnosis of Proteus syndrome at our institution from 10/2001 to 10/2019, 38 individuals (men, n = 23; average age = 24 years) underwent cardiothoracic imaging (routine chest CT, CT pulmonary angiography and/or cardiac MRI). All studies were retrospectively and independently reviewed by two fellowship-trained cardiothoracic readers. Disagreements were resolved by consensus. Differences between variables were analyzed via parametric and nonparametric tests based on the normality of the distribution. The cardiothoracic findings of Proteus syndrome were diverse, but several were much more common and included: scoliosis from bony overgrowth (94%), pulmonary venous dilation (62%), band-like areas of lung scarring (56%), and hyperlucent lung parenchyma (50%). In addition, of 20 individuals who underwent cardiac MRI, 9/20 (45%) had intramyocardial fat, mostly involving the endocardial surface of the left ventricular septal wall. There was no statistically significant difference among the functional cardiac parameters between individuals with and without intramyocardial fat. Only one individual with intramyocardial fat had mildly decreased function (LVEF = 53%), while all others had normal ejection fraction.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
G Italiano ◽  
G Tamborini ◽  
V Mantegazza ◽  
V Volpato ◽  
L Fusini ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Objective. Preliminary studies showed the accuracy of machine learning based automated dynamic quantification of left ventricular (LV) and left atrial (LA) volumes. We aimed to evaluate the feasibility and accuracy of machine learning based automated dynamic quantification of LV and LA volumes in an unselected population. Methods. We enrolled 600 unselected patients (12% in atrial fibrillation) clinically referred for transthoracic echocardiography (2DTTE), who also underwent 3D echocardiography (3DE) imaging. LV ejection fraction (EF), LV and LA volumes were obtained from 2D images; 3D images were analysed using Dynamic Heart Model (DHM) software (Philips) resulting in LV and LA volume-time curves. A subgroup of 140 patients underwent also cardiac magnetic resonance (CMR) imaging. Average time of analysis, feasibility, and image quality were recorded and results were compared between 2DTTE, DHM and CMR. Results. The use of DHM was feasible in 522/600 cases (87%). When feasible, the boundary position was considered accurate in 335/522 patients (64%), while major (n = 38) or minor (n = 149) borders corrections were needed. The overall time required for DHM datasets was approximately 40 seconds, resulting in physiologically appearing LV and LA volume–time curves in all cases. As expected, DHM LV volumes were larger than 2D ones (end-diastolic volume: 173 ± 64 vs 142 ± 58 mL, respectively), while no differences were found for LV EF and LA volumes (EF: 55%±12 vs 56%±14; LA volume 89 ± 36 vs 89 ± 38 mL, respectively). The comparison between DHM and CMR values showed a high correlation for LV volumes (r = 0.70 and r = 0.82, p &lt; 0.001 for end-diastolic and end-systolic volume, respectively) and an excellent correlation for EF (r= 0.82, p &lt; 0.001) and LA volumes. Conclusions. The DHM software is feasible, accurate and quick in a large series of unselected patients, including those with suboptimal 2D images or in atrial fibrillation. Table 1 DHM quality Adjustment Feasibility Good Suboptimal Minor Major Total of patients (n, %) 522/600 (87%) 327/522 (62%) 195/522 (28%) 149/522 (29%) 38/522 (6%) Normal subjects (n, %) 39/40 (97%) 23/39 (57%) 16/39 (40%) 9/39 (21%) 1/39 (3%) Atrial Fibrillation (n, %) 59/73 (81%)* 28/59 (47%) 31/59 (53%) 15/59 (25%) 6/59 (10%) Valvular disease (n, %) 271/312 (87%) 120/271 (%) 151/271 (%) 65/271 (24%) 16/271 (6%) Coronary artery disease (n, %) 47/58 (81%)* 26/47 (46%) 21/47 (37%) 16/47 (34%) 5/47 (11%) Miscellaneous (n, %) 24/25 (96%) 18/24 (75%) 6/24 (25%) 5/24 (21%) 3/24 (12%) Feasibility of DHM, image quality and need to adjustments in global population and in each subgroup. Abstract Figure 1


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Mohamed MesbahTahaHassanin ◽  
Ahmad ShafieAmmar ◽  
Radwa M. Abdullah ◽  
Mohammad Hassan Khedr

Abstract Background Right ventricular apical pacing with the resultant left ventricular dyssynchrony often leads to depressed systolic function and heart failure. This study aimed at investigating the relation between various septal locations guided by ECG and fluoroscopy and the intermediate term functional capacity of the patients. Results Fifty patients who received a single lead pacemaker with assumed > 90% pacemaker dependency. Patients were randomized according to RV pacing site RV into group 1 “high septum” (n = 15), group 2 “mid septum” (n = 25), and group 3 “low septum” (n = 10) using QRS vector and duration as well as fluoroscopic parameters. Their clinical status was assessed 6 months after device implementation using 6-min walk test (6MWT). The study showed that paced QRS complex duration itself has no significant difference between the different septal pacing locations (P-value 0.675), although its combination with the paced QRS complex vector can signify the optimal pacing site and 6MWT showed a significant difference among the groups in favor of group 1; group 1 (413.3 ± 148.5), group 2 (359.8 ± 124.6), and group 3 (276.0 ± 98.5) P value 0.04. Conclusion There was a significant difference found between the three septal pacing sites concerning the patient functional capacity with superiority of high septal location. By contrast, different septal sites showed no significant difference of the paced QRS complex duration. To optimize the pacing site in the septum, assessment of the paced QRS vector in leads I and III is of a great benefit especially when combined with paced QRS complex duration assessment.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Akshar Jaglan ◽  
Sarah Roemer ◽  
Ana C Perez Moreno ◽  
Bijoy K Khandheria

Introduction: Myocardial work is a novel parameter that can be used in a clinic setting to assess left ventricular (LV) pressures and deformation. This study sought to distinguish patterns of global myocardial work index in hypertensive vs. non-hypertensive patients. Methods: Fifty (25 male, mean age 60±14 years) hypertensive patients and 15 (7 male, mean age 38±12 years) control patients underwent transthoracic echocardiography at rest. Hypertensive patients were divided into stage 1 (26 patients) and stage 2 (24 patients) based on the 2017 American College of Cardiology guidelines. We excluded patients with suboptimal image quality for myocardial deformation analysis, reduced ejection fraction (EF), valvular heart disease, and arrhythmia. Global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE) were estimated from LV pressure strain loops utilizing proprietary software from speckle-tracking echocardiography. LV systolic and diastolic pressures were estimated using a noninvasive brachial artery cuff. Results: Global longitudinal strain (GLS) and EF were preserved between the two groups with no statistically significant difference whereas there was a statistically significant difference in the GWI (p<0.01), GCW (p=0.03), GWW (p<0.01), and GWE (p=0.03) (Figure and Table). Conclusions: Myocardial work gives us a closer look at the relationship between LV pressure and contractility in settings of increased load dependency whereas LVEF and GLS cannot. We show how myocardial work is an advanced assessment of LV systolic function in hypertensive patients.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ethan Senser ◽  
Madison Hawkins ◽  
Eric M Williams ◽  
Lauren Gilstrap

Introduction: Left ventricular non-compaction (LVNC) is characterized by extensively trabeculaed myocardium adjacent to normal compacted myocardium of the left ventricle (LV). Hypertrophic cardiomyopathy (HCM) typically appears as diffuse or segmental LV hypertrophy, with or without outflow tract obstruction. Cardiac sarcomere mutations are present in most HCM cases and have also been identified in LVNC. Whether or not there is clinically significant phenotypic overlap between the two diseases is less well understood. We present a case of known HCM that met criteria for both LVNC and HCM by cardiac MRI. Case: A 49-year old man with HCM due to a c.3742_3759dup variant in MYBPC3 presented to clinic after an episode of syncope and ICD firing. In clinic, the device was interrogated and he was found to have had ventricular flutter which was successfully treated with one shock and a new, high (>20%) burden of premature ventricular beats. An echocardiogram showed a stable ejection fraction at 42%, mild concentric LV hypertrophy without obstruction and a newly dilated LV with an end diastolic diameter of 7.1cm (previously 6.2cm). A cardiac MRI was performed ( Figure ) and showed LV noncompaction and diffuse transmural and mid myocardial hyperenhancement/fibrosis of the septum, basilar lateral wall, anterior wall, and distal right ventricle consistent with patient's long-standing history of hypertrophic cardiomyopathy. Discussion: This case highlights the phenotypic overlap between HCM and LVNC by cardiac MRI. Had this patient not already carried a genetic diagnosis of HCM, he would likely have been diagnosed with LVNC based on this cardiac MRI. The phenotypic overlap in these diseases raises questions about ICD guidelines, the role of anticoagulation and prognosis.


Sign in / Sign up

Export Citation Format

Share Document