Role of Rotavirus Enterotoxin NSP4 in the Inflammatory Response in Murine Macrophage RAW 264.7 Cells

2016 ◽  
Vol 46 (4) ◽  
pp. 221
Author(s):  
Song ah Kim ◽  
Van Thai Than ◽  
Wonyong Kim
2019 ◽  
Vol 68 ◽  
pp. 156-163 ◽  
Author(s):  
Fukushi Abekura ◽  
Junyoung Park ◽  
Choong-Hwan Kwak ◽  
Sun-Hyung Ha ◽  
Seung-Hak Cho ◽  
...  

Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 899-908 ◽  
Author(s):  
Zheng Huang ◽  
Hang Xu

AbstractThe aim of this study was to evaluate the role of miR-181a-5p in sepsis, and to further explore the molecular mechanism. RAW 264.7 cells were stimulated with 1 μg/ml LPS for 4 hours. Firstly, qRT-PCR and ELISA was adopted to evaluate the expression of miR-181a-5p and p ro-inflammatory cytokines in RAW 264.7 macrophages a fter LPS stimulation. Results showed that pro-inflammatory cytokines and miR-181a-5p were significantly increased after LPS treatment. Then, we identified that sirtuin-1 (SIRT1) was a direct target of miR-181a-5p and it was down-regulated in LPS treated RAW264.7 macrophages. Furthermore, the data suggested that the miR-181a-5p inhibitor significantly inhibited LPS enhanced inflammatory cytokines expression and NF-κB pathway activation, and these changes were eliminated by SIRT1 silencing. Moreover, the role of the miR-181a-5p inhibitor on sepsis was studied in vivo. We found that the miR-181a-5p inhibitor significantly decreased the secretion of inflammatory factors, and the levels of creatine (Cr), blood urea nitrogen (BUN), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in a serum for mice with sepsis. However, all the effects were reversed by SIRT1-siRNA. In summary, these results indicated that miR-181a-5p was involved in sepsis through regulating the inflammatory response by targeting SIRT1, suggesting that miR-181a-5p may be a potential target for the treatment of sepsis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haidy A. Saleh ◽  
Eman Ramdan ◽  
Mohey M. Elmazar ◽  
Hassan M. E. Azzazy ◽  
Anwar Abdelnaser

AbstractDoxorubicin (DOX) chemotherapy is associated with the release of inflammatory cytokines from macrophages. This has been suggested to be, in part, due to DOX-mediated leakage of endotoxins from gut microflora, which activate Toll-like receptor 4 (TLR4) signaling in macrophages, causing severe inflammation. However, the direct function of DOX on macrophages is still unknown. In the present study, we tested the hypothesis that DOX alone is incapable of stimulating inflammatory response in macrophages. Then, we compared the anti-inflammatory effects of curcumin (CUR), resveratrol (RES) and sulforaphane (SFN) against lipopolysaccharide/interferon-gamma (LPS/IFN-γ)-mediated inflammation in the absence or presence of DOX. For this purpose, RAW 264.7 cells were stimulated with LPS/IFN-γ (10 ng/mL/10 U/mL) in the absence or presence of DOX (0.1 µM). Our results showed that DOX alone is incapable of stimulating an inflammatory response in RAW 264.7 macrophages. Furthermore, after 24 h of incubation with LPS/IFN-γ, a significant increase in tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) mRNA levels was observed. Similarly, nitric oxide (NO) production and TNF-α and IL-6 protein levels were significantly upregulated. Moreover, in LPS/IFN-γ-treated macrophages, the microRNAs (miRNAs) miR-146a, miR-155, and miR-21 were significantly overexpressed. Interestingly, upon testing CUR, RES, and SFN against LPS/IFN-γ-mediated inflammation, only SFN was able to significantly reverse the LPS/IFN-γ-mediated induction of iNOS, TNF-α and IL-6 and attenuate miR-146a and miR-155 levels. In conclusion, SFN, at the transcriptional and posttranscriptional levels, exhibits potent immunomodulatory action against LPS/IFN-γ-stimulated macrophages, which may indicate SFN as a potential treatment for DOX-associated inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3070
Author(s):  
Mariela Gonzalez-Ramirez ◽  
Ivan Limachi ◽  
Sophie Manner ◽  
Juan C. Ticona ◽  
Efrain Salamanca ◽  
...  

In addition to the trichilianones A–D recently reported from Trichilia adolfi, a continuing investigation of the chemical constituents of the ethanol extract of the bark of this medicinal plant yielded the five new limonoids 1–5. They are characterized by having four fused rings and are new examples of prieurianin-type limonoids, having a ε-lactone which in 4 and 5 is α, β- unsaturated. The structures of the isolated metabolites were determined by high field NMR spectroscopy and HR mass spectrometry. The new metabolites were shown to have the ε-lactone fused with a tetrahydrofuran ring which is connected to an oxidized hexane ring joined with a cyclo-pentanone having a 3-furanyl substituent. As the crude extract possesses antileishmanial activity, the compounds were assayed for cytotoxic and antiparasitic activities in vitro in murine macrophage cells (raw 264.7 cells) and in Leishmania amazoniensis as well as L. braziliensis promastigotes. Metabolites 1–3 and 5 showed moderate cytotoxicity (between 30–94 µg/mL) but are not responsible for the antileishmanial effect of the extract.


Shock ◽  
1999 ◽  
Vol 11 (Supplement) ◽  
pp. 83 ◽  
Author(s):  
H. Yang ◽  
J. Vishnubhakat ◽  
H. Wang ◽  
J. Roth ◽  
K. Tracey

2013 ◽  
Vol 5 (5) ◽  
pp. 1345-1350 ◽  
Author(s):  
JIE ZHU ◽  
CHENGQUN LUO ◽  
PING WANG ◽  
QUANYONG HE ◽  
JIANDA ZHOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document