scholarly journals MiR-203 inhibits estrogen-induced viability, migration and invasion of estrogen receptor α-positive breast cancer cells

2017 ◽  
Vol 14 (3) ◽  
pp. 2702-2708 ◽  
Author(s):  
Jun Lin ◽  
Li Wang ◽  
Jie Gao ◽  
Shiguang Zhu
2021 ◽  
Vol 118 (44) ◽  
pp. e2114258118
Author(s):  
Takahiro Masaki ◽  
Makoto Habara ◽  
Yuki Sato ◽  
Takahiro Goshima ◽  
Keisuke Maeda ◽  
...  

Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to β-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118. Finally, the expression of the calcineurin A–α gene (PPP3CA) was associated with poor prognosis in ER-α–positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α–positive breast cancer.


2005 ◽  
Vol 280 (29) ◽  
pp. 27022-27028 ◽  
Author(s):  
Qingnan Li ◽  
Liyu Wu ◽  
Denise K. Oelschlager ◽  
Mei Wan ◽  
Cecil R. Stockard ◽  
...  

2021 ◽  
pp. molcanres.0103.2021
Author(s):  
Shrikanth S. Gadad ◽  
Cristel V Camacho ◽  
Venkat Malladi ◽  
Charles R Hutti ◽  
Anusha Nagari ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Natalia Vydra ◽  
Patryk Janus ◽  
Paweł Kuś ◽  
Tomasz Stokowy ◽  
Katarzyna Mrowiec ◽  
...  

Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from the TCGA database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers, an elevated HSF1 level is associated with metastatic disease.


2018 ◽  
Vol 143 (11) ◽  
pp. 2871-2883 ◽  
Author(s):  
Ming Li Jin ◽  
Young Woong Kim ◽  
Hong Lan Jin ◽  
Hoin Kang ◽  
Eun Kyung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document