Calcineurin regulates the stability and activity of estrogen receptor α

2021 ◽  
Vol 118 (44) ◽  
pp. e2114258118
Author(s):  
Takahiro Masaki ◽  
Makoto Habara ◽  
Yuki Sato ◽  
Takahiro Goshima ◽  
Keisuke Maeda ◽  
...  

Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to β-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118. Finally, the expression of the calcineurin A–α gene (PPP3CA) was associated with poor prognosis in ER-α–positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α–positive breast cancer.

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1314
Author(s):  
Sylwia Lewoniewska ◽  
Ilona Oscilowska ◽  
Antonella Forlino ◽  
Jerzy Palka

It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the mechanism of their effect on apoptosis is not fully understood. It has been considered that ER status of breast cancer cells and estrogen availability might determine proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death, respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate, and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover, lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1, HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regulatory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in supporting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced apoptosis is dependent on ER status in breast cancer cells.


2005 ◽  
Vol 280 (29) ◽  
pp. 27022-27028 ◽  
Author(s):  
Qingnan Li ◽  
Liyu Wu ◽  
Denise K. Oelschlager ◽  
Mei Wan ◽  
Cecil R. Stockard ◽  
...  

2021 ◽  
pp. molcanres.0103.2021
Author(s):  
Shrikanth S. Gadad ◽  
Cristel V Camacho ◽  
Venkat Malladi ◽  
Charles R Hutti ◽  
Anusha Nagari ◽  
...  

Endocrinology ◽  
2014 ◽  
Vol 155 (9) ◽  
pp. 3251-3261 ◽  
Author(s):  
Julia K. Blackmore ◽  
Sudipan Karmakar ◽  
Guowei Gu ◽  
Vaishali Chaubal ◽  
Liguo Wang ◽  
...  

Abstract The SMRT coregulator functions as a dual coactivator and corepressor for estrogen receptor-α (ERα) in a gene-specific manner, and in several studies its elevated expression correlates with poor outcome for breast cancer patients. A specific role of SMRT in breast cancer progression has not been elucidated, but SMRT knock-down limits estradiol-dependent growth of MCF-7 breast cancer cells. In this study, small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) approaches were used to determine the effects of SMRT depletion on growth of ERα-positive MCF-7 and ZR-75–1 breast cancer cells, as well as the ERα-negative MDA-MB-231 breast cancer line. Depletion of SMRT inhibited growth of ERα-positive cells grown in monolayer but had no effect on growth of the ERα-negative cells. Reduced SMRT levels also negatively impacted the anchorage-independent growth of MCF-7 cells as assessed by soft agar colony formation assays. The observed growth inhibitions were due to a loss of estradiol-induced progression through the G1/S transition of the cell cycle and increased apoptosis in SMRT-depleted compared with control cells. Gene expression analyses indicated that SMRT inhibits apoptosis by a coordinated regulation of genes involved in apoptosis. Functioning as a dual coactivator for anti-apoptotic genes and corepressor for pro-apoptotic genes, SMRT can limit apoptosis. Together these data indicate that SMRT promotes breast cancer progression through multiple pathways leading to increased proliferation and decreased apoptosis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Natalia Vydra ◽  
Patryk Janus ◽  
Paweł Kuś ◽  
Tomasz Stokowy ◽  
Katarzyna Mrowiec ◽  
...  

Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from the TCGA database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers, an elevated HSF1 level is associated with metastatic disease.


2005 ◽  
Vol 19 (6) ◽  
pp. 1543-1554 ◽  
Author(s):  
Erika Krasnickas Keeton ◽  
Myles Brown

Abstract Estrogen receptor α (ERα) mediates the effects of estrogens in breast cancer development and growth via transcriptional regulation of target genes. Tamoxifen can antagonize ERα activity and has been used in breast cancer therapy. Tamoxifen-bound ERα associates with nuclear receptor corepressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) at certain target genes. Here we show the effects of reducing N-CoR and SMRT levels on the actions of estrogen and tamoxifen in breast cancer cells. Silencing both corepressors led to tamoxifen-stimulated cell cycle progression without activation of the ERα target genes c-myc, cyclin D1, or stromal cell-derived factor 1, which play a role in estrogen-induced proliferation. By contrast, expression of X-box binding protein 1 was markedly elevated in tamoxifen-treated cells in which N-CoR and SMRT had been silenced. The gain in cell cycle entry seen with tamoxifen when N-CoR and SMRT were silenced was dependent on ERα and not observed upon treatment with estradiol or epidermal growth factor. These results suggest that N-CoR and SMRT play an active role in preventing tamoxifen from stimulating proliferation in breast cancer cells through repression of a subset of target genes involved in ERα function and cell proliferation.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sudipa Saha Roy ◽  
Ratna K. Vadlamudi

Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis.


2018 ◽  
Vol 143 (11) ◽  
pp. 2871-2883 ◽  
Author(s):  
Ming Li Jin ◽  
Young Woong Kim ◽  
Hong Lan Jin ◽  
Hoin Kang ◽  
Eun Kyung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document