scholarly journals In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture

Author(s):  
Ulrich Goessler ◽  
Karen Bieback ◽  
Peter Bugert ◽  
Tobias Heller ◽  
Haneen Sadick ◽  
...  
2009 ◽  
Vol 13 (6) ◽  
pp. 1175-1184 ◽  
Author(s):  
Ulrich Reinhart Goessler ◽  
Peter Bugert ◽  
Karen Bieback ◽  
Jens Stern-Straeter ◽  
Gregor Bran ◽  
...  

2018 ◽  
Vol 18 ◽  
Author(s):  
Chaitra Venugopal ◽  
Christopher Shamir ◽  
Sivapriya Senthilkumar ◽  
Janitri Venkatachala Babu ◽  
Peedikayil Kurien Sonu ◽  
...  

Odontology ◽  
2012 ◽  
Vol 101 (2) ◽  
pp. 121-132 ◽  
Author(s):  
Yuichi Tamaki ◽  
Taka Nakahara ◽  
Hiroshi Ishikawa ◽  
Soh Sato

2020 ◽  
Vol 8 (21) ◽  
pp. 4680-4693
Author(s):  
Jirong Yang ◽  
Yumei Xiao ◽  
Zizhao Tang ◽  
Zhaocong Luo ◽  
Dongxiao Li ◽  
...  

The different negatively charged microenvironments of collagen hydrogels affect the protein adsorption, cell morphology, and chondrogenic differentiation of BMSCs in vitro and in vivo.


2020 ◽  
Vol 21 (3) ◽  
pp. 479-493
Author(s):  
Bruno Machado Bertassoli ◽  
Gerluza Aparecida Borges Silva ◽  
Juliano Douglas Albergaria ◽  
Erika Cristina Jorge

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 347 ◽  
Author(s):  
Marta Anna Szychlinska ◽  
Giovanna Calabrese ◽  
Silvia Ravalli ◽  
Nunziatina Laura Parrinello ◽  
Stefano Forte ◽  
...  

Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG’s ability to promote cell proliferation, maintain cells in their stable active phenotype, and support the production of cartilaginous extracellular matrix (ECM) in human adipose-derived mesenchymal stem cells (hAMSCs) in up to 28 days of three-dimensional (3D) chondrogenic culture. The hAMSC pellets were cultured in chondrogenic medium (CM) and in CM supplemented with CAG (CAG–CM) for 7, 14, 21, and 28 days. At each time-point, the pellets were harvested for histological (hematoxylin and eosin (H&E)), histochemical (Alcian-Blue) and immunohistochemical analysis (Type I, II, and X collagen, aggrecan, SOX9, lubricin). After excluding CAG’s cytotoxicity (MTT Assay), improved cell condensation, higher glycosaminoglycans (sGAG) content, and increased cell proliferation have been detected in CAG–CM pellets until 28 days of culture. Overall, CAG improved the chondrogenic differentiation of hAMSCs, maintaining stable the active chondrocyte phenotype in up to 28 days of 3D in vitro chondrogenic culture. It is proposed that CAG might have a beneficial impact on cartilage regeneration approaches.


Sign in / Sign up

Export Citation Format

Share Document