scholarly journals Exosomal ANXA1 derived from thyroid cancer cells is associated with malignant transformation of human thyroid follicular epithelial cells by promoting cell proliferation

2021 ◽  
Vol 59 (6) ◽  
Author(s):  
Qingchun Li ◽  
Wei Liu ◽  
Zhenglin Wang ◽  
Cong Wang ◽  
Zhilong Ai
2008 ◽  
Vol 93 (3) ◽  
pp. 1020-1029 ◽  
Author(s):  
Audrey J. Robinson-White ◽  
Hui-Pin Hsiao ◽  
Wolfgang W. Leitner ◽  
Elizabeth Greene ◽  
Andrew Bauer ◽  
...  

Abstract Purpose: Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA’s involvement. Experimental Design: We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. Results: 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. Conclusions: 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.


2014 ◽  
Author(s):  
Ying-Ray Lee ◽  
Chieh-Hsiang Lu ◽  
Yi-Sheng Chang ◽  
Yi-Wen Liu

2021 ◽  
Vol 22 (4) ◽  
pp. 2132
Author(s):  
Petra M. Wise ◽  
Paolo Neviani ◽  
Stefan Riwaldt ◽  
Thomas Juhl Corydon ◽  
Markus Wehland ◽  
...  

Space travel has always been the man’s ultimate destination. With the ability of spaceflight though, came the realization that exposure to microgravity has lasting effects on the human body. To counteract these, many studies were and are undertaken, on multiple levels. Changes in cell growth, gene, and protein expression have been described in different models on Earth and in space. Extracellular vesicles, and in particular exosomes, are important cell-cell communicators, being secreted from almost all the cells and therefore, are a perfect target to further investigate the underlying reasons of the organism’s adaptations to microgravity. Here, we studied supernatants harvested from the CellBox-1 experiment, which featured human thyroid cancer cells flown to the International Space Station during the SpaceX CRS-3 cargo mission. The initial results show differences in the number of secreted exosomes, as well as in the distribution of subpopulations in regards to their surface protein expression. Notably, alteration of their population regarding the tetraspanin surface expression was observed. This is a promising step into a new area of microgravity research and will potentially lead to the discovery of new biomarkers and pathways of cellular cross-talk.


2014 ◽  
Vol 99 (7) ◽  
pp. E1163-E1172 ◽  
Author(s):  
Wei Qiang ◽  
Yuan Zhao ◽  
Qi Yang ◽  
Wei Liu ◽  
Haixia Guan ◽  
...  

Context: ZIC1 has been reported to be overexpressed and plays an oncogenic role in some brain tumors, whereas it is inactivated by promoter hypermethylation and acts as a tumor suppressor in gastric and colorectal cancers. However, until now, its biological role in thyroid cancer remains totally unknown. Objectives: The aim of this study is to explore the biological functions and related molecular mechanism of ZIC1 in thyroid carcinogenesis. Setting and Design: Quantitative RT-PCR (qRT-PCR) was performed to evaluate mRNA expression of investigated genes. Methylation-specific PCR was used to analyze promoter methylation of the ZIC1 gene. The functions of ectopic ZIC1 expression in thyroid cancer cells were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell migration and invasion assays. Results: ZIC1 was frequently down-regulated by promoter hypermethylation in both primary thyroid cancer tissues and thyroid cancer cell lines. Moreover, our data showed that ZIC1 hypermethylation was significantly associated with lymph node metastasis in patients with papillary thyroid cancer. Notably, restoration of ZIC1 expression in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration and invasion, and induced cell cycle arrest and apoptosis by blocking the activities of the phosphatidylinositol-3-kinase (PI3K)/Akt and RAS/RAF/MEK/ERK (MAPK) pathways, and enhancing FOXO3a transcriptional activity. Conclusions: Our data demonstrate that ZIC1 is frequently inactivated by promoter hypermethyaltion and functions as a tumor suppressor in thyroid cancer through modulating PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a.


1997 ◽  
Vol 133 (1) ◽  
pp. 33-39 ◽  
Author(s):  
C Schöfl ◽  
L Rössig ◽  
T Mader ◽  
J Börger ◽  
E Pötter ◽  
...  

2005 ◽  
Vol 92 (10) ◽  
pp. 1899-1905 ◽  
Author(s):  
M Mandal ◽  
S Kim ◽  
M N Younes ◽  
S A Jasser ◽  
A K El-Naggar ◽  
...  

2014 ◽  
Vol 12 (1) ◽  
pp. 32 ◽  
Author(s):  
Elisabeth Warnke ◽  
Jessica Pietsch ◽  
Markus Wehland ◽  
Johann Bauer ◽  
Manfred Infanger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document