scholarly journals miR-542-3p overexpression is associated with enhanced osteosarcoma cell proliferation and migration ability by targeting Van Gogh-like 2

2014 ◽  
Vol 11 (2) ◽  
pp. 851-856 ◽  
Author(s):  
HUAZHUANG LI ◽  
HONGTAO LIU ◽  
JINGFANG PEI ◽  
HAIYAN WANG ◽  
HONGLIN LV
2020 ◽  
Author(s):  
Huiyan Wang ◽  
Wenbo Zhou ◽  
Guangtong She ◽  
Bin Yu ◽  
Lizhou Sun

Abstract Background: Gestational diabetes mellitus(GDM) is a common obstetric pregnancy complication, which poses a serious threat to the health of pregnant women and newborns. The specific etiology and pathogenesis of this disease have not been fully clarified, it is reported to be related with insulin resistance, inflammatory response and genetic factors etc. Circular RNA(circRNA) is a special kind of non-coding RNA, which have been attracted much attention in recent years. It has been reported that circRNAs may play a regulatory role in pregnancy-related diseases, including GDM. Methods: Previously we reported a circRNA, hsa_circ_005243, which was identified by RNA-sequencing. In this study we detected its expression in 20 GDM pregnant women and 20 normal controls using quantitative reverse transcription polymerase chain reaction analysis. Further in vitro experiments were conducted after hsa_circ_005243 knockdown in HTR8-S/Vneo cells, cell proliferation and migration ability was tested, the secretion of inflammatory factors (TNF-α and IL-6) were detected by ELISA. Then we detected the expression of β-catenin and increased nuclear factor kappa-B (NF-κB) signaling pathways which was related to GDM in the mechanism study. Results: We found the expression of hsa_circ_005243 was significantly reduced both in the placenta and plasma of GDM pregnant women. Knockdown of hsa_circ_005243 in trophoblast cells significantly suppressed cell proliferation and migration ability. In addition, increased secretion of inflammatory factors (TNF-α and IL-6) were observed after hsa_circ_005243 depletion. Further mechanism experiments showed that knockdown of hsa_circ_005243 reduced the expression of β-catenin and increased nuclear NF-κB p65 nuclear translocation. Conclusions: Collectively, our study showed that down-regulation of hsa_circ_005243 might be associated with the pathogenesis of GDM through regulating β-catenin and NF-κB signal pathways and suggest a new potential therapeutic target for GDM.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangfang Guo ◽  
Jianan Du ◽  
Lingling Liu ◽  
Yawei Gou ◽  
Mingming Zhang ◽  
...  

Aim: Ovarian cancer is a collaborative malignant tumor of the female reproductive system in clinical research. Some clinical studies have shown that OR3A4, which is a cancer-causing lncRNA, plays a major role in promoting the occurrence and development of a variety of tumors. And we also expressed the view that it expressed in ovarian tissue. However, the function of OR3A4 in ovarian cancer remains unclear.Methods and Results: To further verify the function of lncRNA OR3A4 in ovarian cancer, we established the xenograft model in the zebra fish. In this study, cells transformed with OR3A4 shRNA plasmids were transplanted into the zebra fish, and the cell proliferation and migration ability were significantly reduced compared to the empty vector. While knocking out OR3A4, we further downregulated its expression by siRNA of KLF6. Our study found that the knocked out OR3A4 resulted in a decrease in cell proliferation and migration level, which can be found in the downregulated expression of KLF6. We also verify the relationship between OR3A4 and circulating tumor cells in the zebra fish xenograft model, the results indicate that lncRNA OR3A4 may be involved in the resistance of ovarian cancer to complain.Conclusion: lncRNA OR3A4 promotes the proliferation and metastasis of ovarian cancer through the KLF6 pathway.


Sign in / Sign up

Export Citation Format

Share Document