scholarly journals LncRNA AWPPH promotes the proliferation, migration and invasion of ovarian carcinoma cells via activation of the Wnt/β‑catenin signaling pathway

Author(s):  
Guangyu Yu ◽  
Wenshuang Wang ◽  
Junfeng Deng ◽  
Shaohua Dong
2021 ◽  
Vol 11 (3) ◽  
pp. 407-411
Author(s):  
Shenhua Zhang ◽  
Ting Yu

We investigated the effects of silencing the regulator of ribosome synthesis 1 (RRS1) gene on the proliferation, migration, and invasion of ovarian carcinoma cells, and its possible role in modulating signal transduction in these cells. Normal ovarian epithelial cell line IOSE80 was used as a control. We examined the mRNA and protein level of RRS1 using qRT-PCR and western blot in control and ovarian carcinoma cells (SKOV-3, SW626, and CAOV3). RNA interference technology was used to knockdown RRS1 expression in CAOV3 cells. MTT was used to examine the proliferation of these cells, while a Transwell assay was used to assay the cells’ migration and invasion abilities. Western blot was used to measure the levels of CyclinD1, P21, MMP-2, MMP-9, p-JAK2 and p-STAT3 proteins. In comparison with normal ovarian epithelial cells (IOSE80), RRS1 mRNA and protein levels were increased in ovarian carcinoma cells (SKOV-3, SW626 and CAOV3) (P < 0.05). Because RRS1 levels were highest in CAOV3 cells, these cells were used for subsequent experiments. RRS1 gene expression was knocked down in CAOV3 cells, and in comparison with the negative control group, siRNA-RRS1 cells exhibited decreased proliferation in the MTT assay after 48 h and 72 h (P < 0.05). These cells also exhibited reduced migration and invasion (P < 0.05). Further, siRNA-RRS1 cells exhibited reduced expression of CyclinD1, MMP-2, MMP-9, P-JAK2 and P-STAT3 proteins (P < 0.05), while P21 protein levels were increased (P < 0.05). Silencing RRS1 expression inhibits the proliferation, migration, and invasion of ovarian carcinoma cells. This effect may be mediated by the inhibition of the STAT3 signaling pathway in these cells.


2022 ◽  
Vol 12 (2) ◽  
pp. 365-372
Author(s):  
Chunhong Song ◽  
Juan Zhen ◽  
Aihua Gong ◽  
Longying Zhang

Background: The Cripto-1 (CR-1)/glucose-regulated protein 78 (GRP78) complex was involved in enhancing survival in different types of cells. CR-1 presented increased levels in ovarian carcinoma tissue. However, the potential mechanism of CR-1/GRP78 was unclear in ovarian cancer. Thus, the study aimed to analyze the role of CR-1/GRP78 in ovarian carcinoma cells. Methods and materials: The CR-1 and GRP78 expression in different ovarian cancer cell lines were detected by RT-qPCR and Western blot (WB). Immunoprecipitation assay was performed to analyze whether Cripto-1 interacted with GRP78. The CR-1 interfering plasmids or GRP-78 overexpressing plasmids transfected into cells were used to decrease endogenous CR-1 levels and increase GRP-78 levels. Cell clonogenicity and proliferation capabilities were separately evaluated by clone growth assay, along with the detection of cell migration and invasion abilities by transwell and wound healing assay. In addition, Matrix Metalloproteinases (MMPs) levels were detected by WB. The cell apoptosis was analyzed by Flow Cytometer and the detection of apoptosis-related proteins. Results: The results showed that CR-1 and GRP78 levels were higher in SKOV3 than other cell lines. Furthermore, CR-1 interacted with GRP78 in cells, which formed protein complex. CR-1 silence significantly decreased GRP-78 levels. Moreover, GRP78 overexpression blocked the anti-survival effects caused by CR-1 knockdown. Conclusion: CR-1 silence inhibited cell proliferation and promoted apoptosis via GRP78. It replied that GRP-78 overexpression might enhance the biological functions of CR-1/GRP78 complex ameliorated by CR-1 silence. Thus, CR-1/GRP78 could be a potential target for treating ovarian carcinoma.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e74384 ◽  
Author(s):  
Zhi-Qiang Wang ◽  
Mamadou Keita ◽  
Magdalena Bachvarova ◽  
Stephane Gobeil ◽  
Chantale Morin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document