scholarly journals Pien Tze Huang inhibits tumor angiogenesis in a mouse model of colorectal cancer via suppression of multiple cellular pathways

2013 ◽  
Vol 30 (4) ◽  
pp. 1701-1706 ◽  
Author(s):  
ALING SHEN ◽  
JIUMAO LIN ◽  
YOUQIN CHEN ◽  
WEI LIN ◽  
LIYA LIU ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hongwei Chen ◽  
Jianyu Feng ◽  
Yuchen Zhang ◽  
Aling Shen ◽  
Youqin Chen ◽  
...  

Hypoxia-induced angiogenesis plays an important role in the development and metastasis of solid tumors and is highly regulated by HIF-1α/VEGF-A pathway. Therefore, inhibiting tumor angiogenesis via suppression of HIF-1α/VEGF-A signaling represents a promising strategy for anticancer treatment. As a traditional Chinese medicine formula, Pien Tze Huang (PZH) has long been used as a folk remedy for cancer in China and Southeast Asia. Previously, we reported that PZH inhibits colorectal cancer (CRC) growth both in vivo and in vitro. To elucidate the antitumor mechanisms of PZH, in the present study we used human umbilical vein endothelial cells (HUVEC) and colorectal carcinoma HCT-8 cells to evaluate the effects of PZH on hypoxia-induced angiogenesis and investigated the underlying molecular mechanisms. We found that PZH could inhibit hypoxia-induced migration and tube formation of HUVEC cells in a dose-dependent manner, although the low concentrations of PZH had no effect on HUVEC viability. Moreover, PZH inhibited hypoxia-induced activation of HIF-1αsignaling and the expression of VEGF-A and/or VEGFR2 in both HCT-8 and HUVEC cells. Collectively, our findings suggest that PZH can inhibit hypoxia-induced tumor angiogenesis via suppression of HIF-1α/VEGF-A pathway.


2020 ◽  
Vol 20 (5) ◽  
pp. 388-395 ◽  
Author(s):  
Yue Wang ◽  
Youjun Wu ◽  
Kun Xiao ◽  
Yingjie Zhao ◽  
Gang Lv ◽  
...  

Background: Colorectal cancer (CRC) is the second leading cause of death worldwide, and distant metastasis is responsible for the poor prognosis in patients with advanced-stage CRC. RPS24 (ribosomal protein S24) as a ribosomal protein, multiple transcript variant encoding different isoforms have been found for this gene. Our previous studies have demonstrated that RPS24 is overexpressed in CRC. However, the mechanisms underlying the role of RPS24 in tumor development have not been fully defined. Methods: Expression of RPS24 isoforms and lncRNA MVIH in CRC tissues and cell lines were quantified by real-time PCR or western blotting assay. Endothelial tube formation assay was performed to determine the effect of RPS24 on tumor angiogenesis. The cell viability of HUVEC was determined by MTT assay, and the migration and invasion ability of HUVEC were detected by transwell assay. PGK1 secretion was tested with a specific ELISA kit. Results: Here, we found that RPS24c isoform was a major contributor to tumor angiogenesis, a vital process in tumor growth and metastasis. Real-time PCR revealed that RPS24c isoform was highly expressed in CRC tissues, while other isoforms are present in both normal and CRC tissues with no statistical difference. Moreover the change of RPS24 protein level is mainly due to the fluctuation of RPS24c. Furthermore, we observed that silencing RPS24c could decrease angiogenesis by inhibiting tubule formation, HUVEC cell proliferation and migration. Additionally, we investigated the molecular mechanisms and demonstrated that RPS24c mRNA interacted with lncRNA MVIH, the binding-interaction enhanced the stability of each other, thereby activated angiogenesis by inhibiting the secretion of PGK1. Conclusion: RPS24c facilitates tumor angiogenesis via the RPS24c/MVIH/PGK1 pathway in CRC. RPS24c inhibition may be a novel option for anti-vascular treatment in CRC.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Won Jin Ho ◽  
Rossin Erbe ◽  
Ludmila Danilova ◽  
Zaw Phyo ◽  
Emma Bigelow ◽  
...  

Abstract Background The majority of pancreatic ductal adenocarcinomas (PDAC) are diagnosed at the metastatic stage, and standard therapies have limited activity with a dismal 5-year survival rate of only 8%. The liver and lung are the most common sites of PDAC metastasis, and each have been differentially associated with prognoses and responses to systemic therapies. A deeper understanding of the molecular and cellular landscape within the tumor microenvironment (TME) metastasis at these different sites is critical to informing future therapeutic strategies against metastatic PDAC. Results By leveraging combined mass cytometry, immunohistochemistry, and RNA sequencing, we identify key regulatory pathways that distinguish the liver and lung TMEs in a preclinical mouse model of metastatic PDAC. We demonstrate that the lung TME generally exhibits higher levels of immune infiltration, immune activation, and pro-immune signaling pathways, whereas multiple immune-suppressive pathways are emphasized in the liver TME. We then perform further validation of these preclinical findings in paired human lung and liver metastatic samples using immunohistochemistry from PDAC rapid autopsy specimens. Finally, in silico validation with transfer learning between our mouse model and TCGA datasets further demonstrates that many of the site-associated features are detectable even in the context of different primary tumors. Conclusions Determining the distinctive immune-suppressive features in multiple liver and lung TME datasets provides further insight into the tissue specificity of molecular and cellular pathways, suggesting a potential mechanism underlying the discordant clinical responses that are often observed in metastatic diseases.


2021 ◽  
pp. 1-10
Author(s):  
Suzanne Mashtoub ◽  
Lauren C. Chartier ◽  
Debbie Trinder ◽  
Ian C. Lawrance ◽  
Gordon S. Howarth

2008 ◽  
Vol 134 (4) ◽  
pp. A-305-A-306
Author(s):  
Kenneth Hung ◽  
Larissa Georgeon Richard ◽  
Alexandra Kunin ◽  
Umar Mahmood ◽  
Raju Kucherlapati

2014 ◽  
Vol 50 ◽  
pp. S136
Author(s):  
V. Meniel ◽  
I. Martin-Berenjeno ◽  
B. Vanhaesebroeck ◽  
A.R. Clarke

Sign in / Sign up

Export Citation Format

Share Document