566: Investigating PI3Kinase and K-ras pathway interactions in mouse model of colorectal cancer

2014 ◽  
Vol 50 ◽  
pp. S136
Author(s):  
V. Meniel ◽  
I. Martin-Berenjeno ◽  
B. Vanhaesebroeck ◽  
A.R. Clarke
2021 ◽  
pp. 1-10
Author(s):  
Suzanne Mashtoub ◽  
Lauren C. Chartier ◽  
Debbie Trinder ◽  
Ian C. Lawrance ◽  
Gordon S. Howarth

2008 ◽  
Vol 134 (4) ◽  
pp. A-305-A-306
Author(s):  
Kenneth Hung ◽  
Larissa Georgeon Richard ◽  
Alexandra Kunin ◽  
Umar Mahmood ◽  
Raju Kucherlapati

2015 ◽  
Vol 8s1 ◽  
pp. CGM.S21216 ◽  
Author(s):  
Susan LeGendre-McGhee ◽  
Photini S. Rice ◽  
R. Andrew Wall ◽  
Kyle J. Sprute ◽  
Ramireddy Bommireddy ◽  
...  

Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups ( P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency ( P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models.


2017 ◽  
Vol 16 (6) ◽  
pp. 9375-9382 ◽  
Author(s):  
Boduan Xiao ◽  
Yun Qin ◽  
Chang Ying ◽  
Buyun Ma ◽  
Binrong Wang ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Chen ◽  
Bo-lun Shi ◽  
Run-zhi Qi ◽  
Xing Chang ◽  
Hong-gang Zheng

Endogenous metabolites are a class of molecules playing diverse and significant roles in many metabolic pathways for disease. Honokiol (HNK), an active poly-phenolic compound, has shown potent anticancer activities. However, the detailed crucial mechanism regulated by HNK in colorectal cancer remains unclear. In the present study, we investigated the therapeutic effects and the underlying molecular mechanisms of HNK on colorectal cancer in a mouse model (ApcMin/+) by analyzing the urine metabolic profile based on metabolomics, which is a powerful tool for characterizing metabolic disturbances. We found that potential urine biomarkers were involved in the metabolism of compounds such as purines, tyrosines, tryptophans, etc. Moreover, we showed that a total of 27 metabolites were the most contribution biomarkers for intestinal tumors, and we found that the citrate cycle (TCA cycle) was regulated by HNK. In addition, it was suggested that the efficacy of HNK was achieved by affecting the multi-pathway system via influencing relevant metabolic pathways and regulating metabolic function. Our work also showed that high-throughput metabolomics can characterize the regulation of metabolic disorders as a therapeutic strategy to prevent colorectal cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julio César Rodriguez-Gonzalez ◽  
Ivones Hernández-Balmaseda ◽  
Ken Declerck ◽  
Claudina Pérez-Novo ◽  
Emilie Logie ◽  
...  

In spite of the current advances and achievements in cancer treatments, colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. Drug resistance, adverse side effects and high rate of angiogenesis, metastasis and tumor relapse remain one of the greatest challenges in long-term management of CRC and urges need for new leads of anticancer drugs. We demonstrate that CRC treatment with the phytopharmaceutical mangiferin (MGF), a glucosylxanthone present in Mango tree stem bark and leaves (Mangifera Indica L.), induces dose-dependent tumor regression and decreases lung metastasis in a syngeneic immunocompetent allograft mouse model of murine CT26 colon carcinoma, which increases overall survival of mice. Antimetastatic and antiangiogenic MGF effects could be further validated in a wound healing in vitro model in human HT29 cells and in a matrigel plug implant mouse model. Interestingly, transcriptome pathway enrichment analysis demonstrates that MGF inhibits tumor growth, metastasis and angiogenesis by multi-targeting of mitochondrial oxidoreductase and fatty acid β-oxidation metabolism, PPAR, SIRT, NFκB, Stat3, HIF, Wnt and GP6 signaling pathways. MGF effects on fatty acid β-oxidation metabolism and carnitine palmitoyltransferase 1 (CPT1) protein expression could be further confirmed in vitro in human HT29 colon cells. In conclusion, antitumor, antiangiogenic and antimetastatic effects of MGF treatment hold promise to reduce adverse toxicity and to mitigate therapeutic outcome of colorectal cancer treatment by targeting mitochondrial energy metabolism in the tumor microenvironment.


Sign in / Sign up

Export Citation Format

Share Document