scholarly journals Wildlife inventory from camera-trapping surveys in the Azores (Pico and Terceira islands)

2020 ◽  
Vol 8 ◽  
Author(s):  
Lucas Lamelas-Lopez ◽  
Xose Pardavila ◽  
Isabel Amorim ◽  
Paulo Borges

The present publication provides a dataset from five camera-trapping sampling campaigns on two islands of the Azorean archipelago (Pico and Terceira islands), between 2013-2018. This dataset was obtained as a by-product of campaigns designed for different purposes. The sampling campaigns were designed to: (i) study the ecology of introduced mammals; (ii) assess the impact of introduced mammals on native birds (Azores woodpigeon - Columba palumbus azorica and Cory's shearwater - Calonectris diomeda borealis), through nest predation; and (iii) obtain information about the impact of vertebrates on agricultural systems, particularly on Azorean traditional vineyards. A total of 258 sites and 47 nests were sampled using camera traps. These sampling campaigns provided a large data series that allowed the creation of a vertebrate wildlife inventory. We obtained a total of 102,095 camera-trap records, which allowed us to to identify 30 species of vertebrates: one amphibian, one reptile, 17 birds and ten mammal species. This represented 100% of the amphibians and terrestrial mammals, 58% of the breeding birds and 50% of the reptile species known for Pico and/or Terceira islands. Concerning the colonisation status of the species, we recorded 15 indigenous (native non-endemic or endemic) and three introduced bird species; all known terrestrial amphibians, reptiles and mammals in the Azores are introduced species. The data collected contribute to increasing knowledge on the distribution of vertebrate species on Pico and Terceira islands, where most existing records of some species were only available to Island level (e.g. mustelids and hedgehogs). None of the identified species was previously unknown to the study area.

2016 ◽  
Vol 16 (2) ◽  
Author(s):  
Roberta Montanheiro Paolino ◽  
Natalia Fraguas Versiani ◽  
Nielson Pasqualotto ◽  
Thiago Ferreira Rodrigues ◽  
Victor Gasperotto Krepschi ◽  
...  

Habitat loss and degradation is threatening mammals worldwide. Therefore, Protected Areas (PA) are of utmost importance to preserve biodiversity. Their effectiveness, however, depends on some management strategies such as buffer zones, which prevent/mitigate the impact of external threats and might increase the amount of available habitat for wildlife existing within reserves. Nevertheless, how intensively terrestrial mammals use buffer zones remains little studied, particularly in the Neotropical region. Aiming to analyse the use of a buffer zone (5 km wide) by medium and large-sized mammals, we modelled the occupancy probabilities of five species of conservation concern including local (interior and buffer zone) as a site covariate, simultaneously controlling for imperfect detection. Data collection was made with camera traps from April to September 2013 in a 9000 ha Cerrado PA (“interior”) and in its surrounding area (39721.41 ha; “buffer zone”). This PA (Jataí Ecological Station) is immersed in a landscape where sugarcane plantations predominate in the northeastern of the state of São Paulo. We also conducted an inventory to compare the number and composition of species between interior and buffer zone. A total of 31 mammal species (26 natives) was recorded via camera traps and active search for sightings, vocalizations, tracks and signs. Occupancy estimates for Myrmecophaga tridactyla, Leopardus pardalis and Pecari tajacu were numerically higher in interior. On the other hand, Chrysocyon brachyurus had the highest occupancy in buffer zone, while the largest predator, Puma concolor, used both areas similarly. However, as the confidence intervals (95%) overlapped, the differences in occupancy probabilities between interior and buffer were weak for all these species. Additionally, regarding only the species recorded by cameras, the observed and estimated richness were similar between interior and buffer zone of the PA. Our data demonstrated that the buffer zone is indeed used by medium and large-sized mammals, including conservation-dependent ones. The lack of enforcement of current legislation regarding buffer zones is therefore a real threat for mammals, even when protection is guaranteed in the interior of protected areas.


2021 ◽  
Vol 71 (3) ◽  
pp. 311-327
Author(s):  
Mayra Zamora-Espinoza ◽  
Juan Carlos López-Acosta ◽  
Eduardo Mendoza

Abstract Studies of tropical mammal defaunation highlight the loss of species as well as their reduction in abundance and diversity; however, there is a complex series of effects associated with this anthropogenic disruption, including increases in the relative abundance of disturbance-tolerant mammals and the arrival of alien mammals whose effects on biotic interactions have been poorly studied. We compared the species richness, composition, interaction strength, and patterns of daily activity of mammals that consume the fruits of Pouteria sapota on the forest floor, both inside and outside of the Los Tuxtlas Field Station (LTFS) in Veracruz, southern Mexico. Using camera traps, we recorded eight mammal species interacting with the fruits inside the LTFS ( trees) and nine species interacting outside ( trees). Alien species such as Canis lupus familiaris were recorded both inside and outside of the LTFS, whereas Bos taurus was only recorded outside. Medium-sized generalist mammals were overrepresented both inside and outside of the LTFS, evidencing an impoverishment of the fauna, when compared to the mammal assemblage reported to interact with P. sapota fruits in a more intact forest. The daily activity patterns of the mammals that interacted strongly with P. sapota fruits were different inside and outside the LTFS, particularly in the case of Cuniculus paca. Our results show that the impact of human activity is highly pervasive, directly affecting the mammalian fauna at different levels and indirectly affecting the biotic interactions in which these animals are involved.


2015 ◽  
Vol 42 (5) ◽  
pp. 414 ◽  
Author(s):  
Dustin J. Welbourne ◽  
Christopher MacGregor ◽  
David Paull ◽  
David B. Lindenmayer

Context Biodiversity studies often require wildlife researchers to survey multiple species across taxonomic classes. To detect terrestrial squamate and mammal species, often multiple labour-intensive survey techniques are required. Camera traps appear to be more effective and cost-efficient than labour-intensive methods for detecting some mammal species. Recent developments have seen camera traps used for detecting terrestrial squamates. However, the performance of camera traps to survey terrestrial squamate and mammal species simultaneously has not been evaluated. Aim We compared the effectiveness and financial cost of a camera trapping method capable of detecting small squamates and mammals with a set of labour-intensive complementary methods, which have been used in a long-term monitoring program. Methods We compared two survey protocols: one employed labour-intensive complementary methods consisting of cage traps, Elliott traps and artificial refuges; the second utilised camera traps. Comparisons were made of the total number of species detected, species detectability, and cost of executing each type of survey. Key results Camera traps detected significantly more target species per transect than the complementary methods used. Although camera traps detected more species of reptile per transect, the difference was not significant. For the initial survey, camera traps were more expensive than the complementary methods employed, but for realistic cost scenarios camera traps were less expensive in the long term. Conclusions Camera traps are more effective and less expensive than the complementary methods used for acquiring incidence data on terrestrial squamate and mammal species. Implications The camera trapping method presented does not require customised equipment; thus, wildlife managers can use existing camera trapping equipment to detect cryptic mammal and squamate species simultaneously.


2018 ◽  
Vol 40 (2) ◽  
pp. 188 ◽  
Author(s):  
Phoebe A. Burns ◽  
Marissa L. Parrott ◽  
Kevin C. Rowe ◽  
Benjamin L. Phillips

Camera trapping has evolved into an efficient technique for gathering presence/absence data for many species; however, smaller mammals such as rodents are often difficult to identify in images. Identification is inhibited by co-occurrence with similar-sized small mammal species and by camera set-ups that do not provide adequate image quality. Here we describe survey procedures for identification of two small, threatened rodent species – smoky mouse (Pseudomys fumeus) and New Holland mouse (P. novaehollandiae) – using white-flash and infrared camera traps. We tested whether observers could accurately identify each species and whether experience with small mammals influenced accuracy. Pseudomys fumeus was ~20 times less likely to be misidentified on white-flash images than infrared, and observer experience affected accuracy only for infrared images, where it accounted for all observer variance. Misidentifications of P. novaehollandiae were more common across both flash types: false positives (>0.21) were more common than false negatives (<0.09), and experience accounted for only 31% of variance in observer accuracy. For this species, accurate identification appears to be, in part, an innate skill. Nonetheless, using an appropriate setup, camera trapping clearly has potential to provide broad-scale occurrence data for these and other small mammal species.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jessica Karen Haysom ◽  
Nicolas J. Deere ◽  
Oliver R. Wearn ◽  
Azniza Mahyudin ◽  
Jamiluddin bin Jami ◽  
...  

Arboreal mammals form a diverse group providing ecologically important functions such as predation, pollination and seed dispersal. However, their cryptic and elusive nature, and the heights at which they live, makes studying these species challenging. Consequently, our knowledge of rainforest mammals is heavily biased towards terrestrial species, limiting our understanding of overall community structure and the possible impacts of human-induced disturbance. We undertook the first in-depth appraisal of an arboreal mammal community in Southeast Asia, using camera-traps set in unlogged and logged tropical rainforest in Sabah, Borneo. Using paired canopy and terrestrial camera-traps at 50 locations (25 in unlogged forest, 25 in logged), we assessed the effectiveness of camera-trapping at characterising the arboreal versus terrestrial community, and tested the influence of strata and forest type on community structure and composition. The paired design detected 55 mammal species across 15,817 camera-trap nights (CTNs), and additional canopy sampling in a subset of trees added a further two arboreal species to the inventory. In total, thirty species were detected exclusively by terrestrial camera-traps, eighteen exclusively by canopy camera-traps, and nine by units set at both heights, demonstrating significant differences between arboreal and terrestrial communities. This pattern was strongest in unlogged forest, reflecting greater structural diversity of this habitat, but held in logged forest as well. Species accumulation curves revealed that canopy camera-trapping significantly boosted species inventories compared to terrestrial-only sampling, and was particularly effective at detecting gliding mammals, rodents and primates. Canopy inventories took longer to reach an asymptote, suggesting that a greater sampling effort is required when deploying canopy camera-traps compared to those set on the ground. We demonstrate that arboreal mammals in Borneo’s rainforest form a diverse and distinct community, and can be sampled effectively using canopy camera-traps. However, the additional costs incurred by sampling in the canopy can be substantial. We provide recommendations to maximise sampling effectiveness, while bringing down costs, to help encourage further study into one of the last frontiers of tropical forest research.


Oryx ◽  
2012 ◽  
Vol 46 (4) ◽  
pp. 567-576 ◽  
Author(s):  
Daniel H. Thornton ◽  
Lyn C. Branch ◽  
Melvin E. Sunquist

AbstractThe potential conservation value of fragmented or countryside landscapes in the tropics is being increasingly recognized. However, the degree to which fragmented landscapes can support species and the key patch and landscape features that promote population persistence remain poorly understood for elusive species such as ground-dwelling birds. We examined the presence/absence of seven species of galliforms and tinamous in 50 forest patches of 2.9–445 ha in northern Guatemala using camera traps and audiovisual surveying. After accounting for differences in detectability among species we found great variation in patterns of vulnerability of these species to habitat loss and fragmentation, with the three largest species being the most vulnerable. Distribution patterns of species among patches was influenced more strongly by measures of landscape context, such as the amount and configuration of habitat in the surrounding landscape, than within-patch variation in vegetation structure or disturbance. Our results indicate that large-bodied game birds may be particularly sensitive to habitat loss and fragmentation and emphasize that management efforts for these species need to go beyond consideration of local, within-patch factors to consider the impact of processes in the surrounding landscape. Our findings also demonstrate the utility of camera traps as a methodology for surveying large terrestrial bird species in fragmented landscapes.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1328 ◽  
Author(s):  
Valeria L. Martin-Albarracin ◽  
Martin A. Nuñez ◽  
Guillermo C. Amico

One of the possible consequences of biological invasions is the decrease of native species abundances or their replacement by non-native species. In Andean Patagonia, southern Argentina and Chile, many non-native animals have been introduced and are currently spreading. On Isla Victoria, Nahuel Huapi National Park, many non-native vertebrates were introduced ca. 1937. Records indicate that several native vertebrates were present before these species were introduced. We hypothesize that seven decades after the introduction of non-native species and without appropriate management to maintain native diversity, non-native vertebrates have displaced native species (given the known invasiveness and impacts of some of the introduced species). We conducted direct censuses in linear transects 500 m long (n= 10) in parallel with camera-trapping (1,253 camera-days) surveys in two regions of the island with different levels of disturbance: high (n= 4) and low (n= 6) to study the community of terrestrial mammals and birds and the relative abundances of native and non-native species. Results show that currently non-native species are dominant across all environments; 60.4% of census records and 99.7% of camera trapping records are of non-native animals. We detected no native large mammals; the assemblage of large vertebrates consisted of five non-native mammals and one non-native bird. Native species detected were one small mammal and one small bird. Species with the highest trapping rate were red and fallow deer, wild boar, silver pheasant (all four species are non-native) and chucao (a native bird). These results suggest that native species are being displaced by non-natives and are currently in very low numbers.


Oryx ◽  
2020 ◽  
pp. 1-8
Author(s):  
Lucas Lamelas-López ◽  
Iván Salgado

Abstract The introduction of mammal predators has been a major cause of species extinctions on oceanic islands. Eradication is only possible or cost-effective at early stages of invasion, before introduced species become abundant and widespread. Although prevention, early detection and rapid response are the best management strategies, most oceanic islands lack systems for detecting, responding to and monitoring introduced species. Wildlife managers require reliable information on introduced species to guide, assess and adjust management actions. Thus, a large-scale and long-term monitoring programme is needed to evaluate the management of introduced species and the protection of native wildlife. Here, we evaluate camera trapping as a survey technique for detecting and monitoring introduced small and medium-sized terrestrial mammals on an oceanic island, Terceira (Azores). Producing an inventory of introduced mammals on this island required a sampling effort of 465 camera-trap days and cost EUR 2,133. We estimated abundance and population trends by using photographic capture rates as a population index. We also used presence/absence data from camera-trap surveys to calculate detection probability, estimated occupancy rate and the sampling effort needed to determine species absence. Although camera trapping requires large initial funding, this is offset by the relatively low effort for fieldwork. Our findings demonstrate that camera trapping is an efficient survey technique for detecting and monitoring introduced species on oceanic islands. We conclude by proposing guidelines for designing monitoring programmes for introduced species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Isabel Queirós Neves ◽  
Maria da Luz Mathias ◽  
Cristiane Bastos-Silveira

AbstractA valuable strategy to support conservation planning is to assess knowledge gaps regarding primary species occurrence data to identify and select areas for future biodiversity surveys. Currently, increasing accessibility to these data allows a cost-effective method for boosting knowledge about a country’s biodiversity. For understudied countries where the lack of resources for conservation is more pronounced to resort to primary biodiversity data can be especially beneficial. Here, using a primary species occurrence dataset, we assessed and mapped Mozambique’s knowledge gaps regarding terrestrial mammal species by identifying areas that are geographically distant and environmentally different from well-known sites. By comparing gaps from old and recent primary species occurrence data, we identified: (i) gaps of knowledge over time, (ii) the lesser-known taxa, and (iii) areas with potential for spatiotemporal studies. Our results show that the inventory of Mozambique’s mammal fauna is near-complete in less than 5% of the territory, with broad areas of the country poorly sampled or not sampled at all. The knowledge gap areas are mostly associated with two ecoregions. The provinces lacking documentation coincide with areas over-explored for natural resources, and many such sites may never be documented. It is our understanding that by prioritising the survey of the knowledge-gap areas will likely produce new records for the country and, continuing the study of the well-known regions will guarantee their potential use for spatiotemporal studies. The implemented approach to assess the knowledge gaps from primary species occurrence data proved to be a powerful strategy to generate information that is essential to species conservation and management plan. However, we are aware that the impact of digital and openly available data depends mostly on its completeness and accuracy, and thus we encourage action from the scientific community and government authorities to support and promote data mobilisation.


2020 ◽  
Vol 1 (2) ◽  
pp. 14-24
Author(s):  
Anton Ario ◽  
Sarmaidah Damanik ◽  
Ahsan Rabbani ◽  
Berto Dionisius Naibaho ◽  
Abdul Rojak Hasibuan ◽  
...  

Assessing the species diversity in non-conservation areas is crucial to understanding for conservation interventions and management. We used camera trapping to investigate the species diversity in the Batang Angkola Landscape in North Sumatra. The study on species diversity in the area was conducted in 5 months from February to June 2020. The aim of this study is to assess the species diversity in Batang Angkola landscape as a reference for the improvement of the management and policy with a special interest in proving the existence of wildlife species in the landscape. We compiled a species diversity, richness and evenness investigated conducted a test to Shannon wiener analyses. Based on 1,283 photograph at 60 camera traps stations during 2,923 trap days, we identified 27 different species (24 species are terrestrial mammals, 2 species are birds, and 1 species is reptile), including five classified as threatened according to the IUCN. Based on the calculation of the Relative Abundance Indices for each species per 100 trap days, pig-tailed macaque  had the highest RAI (3.63 photograph /100 trap days), followed by wild boar and muntjac were (1.33 and 1.27 photographed/100 traps days respectively). Based on Shannon Weiner analysis shows the analysis of species diversity (H), which showed that in the northern and southern areas it was moderate (2.40 and 2.45 respectively). The level of evenness between north and south areas shows high evenness (0.77 and 0.79 respectively). The level of species richness between north and south shows moderate to high levels in the two areas (3.95 and 4.42 respectively). Our findings suggest that Batang Angkola Landscape supports a high species richness. Continued survey efforts need to be combined with detailed ecological data collection and effective management in the region.Menilai keanekaragaman spesies di kawasan non-konservasi sangat penting untuk memahami upaya pengelolaan dan intervensi konservasi. Kami menggunakan camera trap untuk menyelidiki keanekaragaman spesies di Bentang Alam Batang Angkola di Sumatera Utara. Kajian keanekaragaman jenis di kawasan ini dilakukan selama 5 bulan dari Februari hingga Juni 2020. Tujuan penelitian ini adalah untuk mengkaji keanekaragaman jenis di bentang alam Batang Angkola sebagai acuan perbaikan tata kelola dan kebijakan, spesifik pada membuktikan keberadaan spesies satwa liar. Data keanekaragaman spesies, kekayaan dan kemerataan yang kami kumpulkan, dianalisis dengan Shannon wiener. Berdasarkan 1.283 foto di 60 stasiun perangkap kamera selama 2.923 hari rekam, kami mengidentifikasi 27 spesies berbeda (24 spesies mamalia darat, 2 spesies burung, dan 1 spesies reptil), termasuk lima jenis yang diklasifikasikan sebagai satwa terancam menurut IUCN. Berdasarkan perhitungan Indeks Kelimpahan Relatif untuk setiap spesies per 100 hari rekam, beruk memiliki RAI tertinggi (3,63 foto / 100 hari rekam), disusul babi hutan dan kijang (masing-masing 1,33 dan 1,27 foto / 100 hari rekam). Berdasarkan analisis Shannon-Weiner untuk keanekaragaman jenis (H) menunjukkan bahwa di wilayah utara dan selatan dalam kategori sedang (masing-masing 2,40 dan 2,45). Tingkat kemerataan antara wilayah utara dan selatan menunjukkan tingkat kategori kemerataan yang tinggi (masing-masing 0,77 dan 0,79). Tingkat kekayaan spesies antara utara dan selatan menunjukkan kategori tingkat sedang hingga tinggi di kedua wilayah tersebut (masing-masing 3,95 dan 4,42). Temuan kami menunjukkan bahwa Bentang Alam Batang Angkola mendukung kekayaan spesies yang tinggi. Upaya survey lanjutan perlu digabungkan dengan pengumpulan data ekologi yang terperinci dan pengelolaan yang efektif di wilayah tersebut.


Sign in / Sign up

Export Citation Format

Share Document