scholarly journals Role of species: traits, interactions and ecosystem services

2018 ◽  
Vol 2 ◽  
pp. e25345
Author(s):  
Tereza Giannini ◽  
Marcelo Awade ◽  
Leonardo Miranda ◽  
Leonardo Trevelin ◽  
Carlos Silva ◽  
...  

Understanding the role that species play in their environment is a fundamental goal of biodiversity research, bringing knowledge on ecosystem maintenance and in provision of ecosystem services. Different types of interaction that different species establish with their partners regulate the functioning of ecosystems (McCann 2007). Interactions between plants and pollinators (Potts et al. 2016) and between plants and seed dispersers (Wang and Smith 2002) are examples of mutualism, crucial to the maintenance of the floristic composition and overall biodiversity in different biomes. They also illustrate well the nature's contribution to people, supporting ecosystem services with key economic consequences, such as pollination of agricultural crops (Klein et al. 2007) and seed dispersal of natural or assisted restoration of degraded areas (Wunderle 1997). Interactions are mediated by different functional traits (morphological and/or behavioral characteristics of organisms that influence their performance) (Ball et al. 2015). As the zoochorous transfer of pollen grains and seeds usually involves contact, the success of pollination and seed dispersal depends to a large extend on the relationship of size and morphology between flower/fruit and their respective pollinator/seed disperser. Selected over a long history of shared evolutionary history, it is feasible to rely on the predictive potential these traits may have to determine if a certain animal is able to transfer pollen grains and/or seeds of specific plants in the landscape (Howe 2016). Biodiversity is facing constant negative impacts, especially related to climate and habitat changes. They are threatening the provision of ecosystem services, jeopardizing the basic premise of sustainable development, which is to guarantee resources for future generations. The novel landscapes that result from these impacts will certainly be dependent of these ecosystem services, but will they persist in face of extinctions and invasive competitors? Ultimately, will these services be predicable by functional traits, in landscapes where shared evolutionary history is reduced? Strategies that help our understanding of the interactions and their role in the provision of services are urgent (Corlett 2011). Given this context, our objective here is to present the type of data that, if made available, could assist in determining the role of species in terms of the interactions they make and the provision of ecosystem services. Moreover, we aimed to elucidate how this role can be associated with functional traits. The current work focuses on the following groups: plants, birds, bats and bees (Fig. 1). Of particular interest are interactions involving: pollination, which is carried out predominantly by bees, but also by nectarivorous birds and bats; and seed dispersal, mainly carried out by frugivorous birds and bats. These interactions are mediated by key traits. In plants, common flower traits are the aperture, color, odor strength and type, shape orientation, size and symmetry, nectar guide and sexual organ, and reward. Fruit or seed traits, such as fleshy nutrient, chemical attractant and clinging structures, are also relevant for seed dispersal. In animals the most common traits are the body size (for bees, the intertegular distance; for bats, forearm length; and for birds, the weight), gape-width for birds and the feeding habit (nectarivorous, frugivorous, omnivorous) for bats and birds. Providing standardized data on traits involving interactions between fauna and flora is important to fill knowledge gaps, which could help in the decision making processes aiming conservation, restoration and management programs for protecting ecosystem services based on biodiversity.

Author(s):  
B. F. Lessi ◽  
M. G. Reis ◽  
C. Z. Fieker ◽  
M. M. Dias

Abstract Birds play a key role in ecosystem dynamics, including urban and rural areas, bringing environmental quality improvements and ecological stability. Species contribute directly to natural regeneration of vegetation and succession processes, by offering ecosystem services as seed dispersal, an important role in human-modified areas. We studied the assemblages of fruit-eating birds in riparian environments of Monjolinho basin, central São Paulo state, southeastern Brazil. Birds were recorded in 41 points distributed in riparian ecosystems alongside waterbodies, in landscapes with five types of surrounding matrices: urban, periurban, farmland, and native vegetation. We described how assemblages are structured aiming to evaluate the possible influence of seasonality and landscape type. We recorded 39 bird species that can play a role as seed-dispersers, 32 in wet season and 32 in dry season. There were no significant differences in the diversity and dominance of species between seasons considering the entire area, indicating stability of basic assemblage structure. However, total number of individuals of all species recorded in different landscapes were influenced by seasonality. Also, the composition and abundance of species significantly changed between seasons, leading to a high dissimilarity with almost 50% of the species contributing with almost 90% of the observed variation. A higher taxonomic diversity and distinctness pointed to a wider array of possible seed dispersal services in natural areas, while the lowest values of indexes were found in human-modified areas. The higher number of non-related bird species during dry season contrasted with the higher number of individuals during wet season, indicating that there is more possible ecosystem services offered by frugivorous birds in driest period of the year, while in the rainy period the carrying capacity of the riparian environments was increased.


Author(s):  
Rocío de TORRE ◽  
María Dolores JIMÉNEZ ◽  
Álvaro RAMÍREZ ◽  
Ignacio MOLA ◽  
Miguel A. CASADO ◽  
...  

Plantings are commonly used in roadside reclamation for ornamental purposes and for increasing slope stability and road safety. However, the role of these plantings in restoring ecological processes, such as seed dispersal, has received little attention. We carried out a study to assess the potential role of plantings on roadside embankments to attract frugivorous birds and to enhance seed dispersal mediated by birds from the surrounding landscape. We examined: (1) bird species richness and abundance; (2) patterns of avian spatial distribution within embankments and (3) seed dispersal mediated by birds. Bird richness and abundance did not differ between embankments with and without plantings. However, birds were not distributed randomly within embankments, with levels of species richness and abundance for facultative frugivorous between 4.8–8 times higher in areas closer to plantings. An analysis of bird droppings showed that birds only dispersed seeds of the planted species since no seeds of woody plants from matrices were detected. These results suggest that plantings acted as selective bird attractors, providing food and perches for frugivorous species. Nevertheless, the scarcity of seed-dispersing birds in the surrounding agricultural landscape prevented plantings from enhancing seed dispersal and connectivity to adjacent habitat.


2018 ◽  
Vol 285 (1872) ◽  
pp. 20172755 ◽  
Author(s):  
Randall S. Reiserer ◽  
Gordon W. Schuett ◽  
Harry W. Greene

Seed dispersal is a key evolutionary process and a central theme in the population ecology of terrestrial plants. The primary producers of most land-based ecosystems are propagated by and maintained through various mechanisms of seed dispersal that involve both abiotic and biotic modes of transportation. By far the most common biotic seed transport mechanism is zoochory, whereby seeds, or fruits containing them, are dispersed through the activities of animals. Rodents are one group of mammals that commonly prey on seeds (granivores) and play a critical, often destructive, role in primary dispersal and the dynamics of plant communities. In North America, geomyid, heteromyid and some sciurid rodents have specialized cheek pouches for transporting seeds from plant source to larder, where they are often eliminated from the pool of plant propagules by consumption. These seed-laden rodents are commonly consumed by snakes as they forage, but unlike raptors, coyotes, bobcats, and other endothermic predators which eat rodents and are known or implicated to be secondary seed dispersers, the role of snakes in seed dispersal remains unexplored. Here, using museum-preserved specimens, we show that in nature three desert-dwelling rattlesnake species consumed heteromyids with seeds in their cheek pouches. By examining the entire gut we discovered, furthermore, that secondarily ingested seeds can germinate in rattlesnake colons. In terms of secondary dispersal, rattlesnakes are best described as diplochorous. Because seed rescue and secondary dispersal in snakes has yet to be investigated, and because numerous other snake species consume granivorous and frugivorous birds and mammals, our observations offer direction for further empirical studies of this unusual but potentially important channel for seed dispersal.


1998 ◽  
Vol 14 (4) ◽  
pp. 389-411 ◽  
Author(s):  
Mercedes S. Foster ◽  
Linda S. Delay

ABSTRACT. Seeds with ‘imitation arils’ appear wholly or partially covered by pulp or aril but actually carry no fleshy material. The mimetic seed hypothesis to explain this phenomenon proposes a parasitic relationship in which birds are deceived into dispersing seeds that resemble bird-dispersed fruits, without receiving a nutrient reward. The hard-seed for grit hypothesis proposes a mutualistic relationship in which large, terrestrial birds swallow the exceptionally hard mimetic seeds as grit for grinding the softer seeds on which they feed. They defecate, dispersing the seeds, and abrade the seed surface, enhancing germination. Any fruit mimicry is incidental. Fruiting trees of Ormosia spp. (Leguminosae: Papilionoideae) were observed to ascertain mechanisms of seed dispersal and the role of seemingly mimetic characteristics of the seeds in that dispersal. Seed predation and seed germination were also examined. Ormosia isthamensis and O. macrocalyx (but not O. bopiensis) deceived arboreally-foraging frugivorous birds into taking their mimetic seeds, although rates of seed dispersal were low. These results are consistent with the mimetic seed hypothesis. On the other hand, the rates of disappearance of seeds from the ground under the Ormosia trees, hardness of the seeds, and enhancement of germination with the abrasion of the seed coat are all consistent with the hard-seed for grit hypothesis. RESUMEN. Semillas con arilos falsos aparecen estar cubiertas en parte o completamente por pulpa o arilo, pero en realidad no llevan ninguna materia carnosa. El hipótesis semilla mímica propone que las semillas parecen frutos carnosos cuyas semillas están dispersadas por aves y que engañan las aves a dispersar sus semillas sin recibir una recompensa nutritiva — una relación parasítica. El hipótesis semilla dura para arenisca propone que aves grandes y terrestres tragan las semillas mímicas y excepcionalmente duras como arenisca para moler las semillas más suaves en que se alimentan; las aves defecan y dispersan las semillas, y las rascan, lo cual mejora la germinación — una relación mutua. Cualquier mimetismo es incidente. Se observaron árboles de Ormosia espp. (Leguminosae: Papilionoideae) con frutos para averiguar los mecanismos de dispersión de semillas y el papel que hacen las características aparentemente mímicas de sus semillas en esa dispersión. Se examinaron también la depredación y germinación de semillas. Las semillas mímicas de Ormosia isthamensis y O. macrocalyx (pero no O. bopiensis), engañaron aves frugivoras y arbóreas en comerlas, aunque las tasas de dispersión eran bajas. Estos resultados son consistente con el hipótesis semilla mímica. En cambio, las tasas de desaparición de semillas caídas de Ormosia, dureza de las semillas, y mejoramiento de germinación con la raedura de las capas de las semillas son consistente con el hipótesis semilla dura para arenisca.


2020 ◽  
Vol 34 (11) ◽  
pp. 2283-2291
Author(s):  
Esther Sebastián‐González ◽  
Ádám Lovas‐Kiss ◽  
Merel B. Soons ◽  
Bas Broek ◽  
Andy J. Green

2006 ◽  
Vol 56 (1) ◽  
Author(s):  
Verónica Souza da Mota Gomes ◽  
Maria Célia Rodrigues Correia ◽  
Heloisa Alves de Lima ◽  
Maria Alice S. Alves

2010 ◽  
Vol 10 (3) ◽  
pp. 45-51 ◽  
Author(s):  
Graziele D'Avila ◽  
Antonio Gomes-Jr ◽  
Ana Carolina Canary ◽  
Leandro Bugoni

Frugivorous birds play a key role in seed dispersal and establishment of a range of plant species, including invasive weeds, such as the Brazilian Pepper Schinus terebinthifolius. The potential of seed dispersal of Schinus by birds with varied feeding behaviours was studied through seed-viability tests and germination experiments using seeds obtained from birds in the field and birds kept in captivity. It was found that seeds collected after gut passage in five bird species in the field had higher proportion of germination as well as higher germination rates compared to the control seeds. Viability of seeds ingested by the Blue-and-yellow Tanager Thraupis bonariensis, which mandibulates seeds before ingesting, was significantly lower than control seeds, while reduction in viability of seeds ingested by the Creamy-bellied Thrush Turdus amaurochalinus was nonsignificant. Seeds ingested by birds in captivity germinated earlier than the control seeds, within 1-2 weeks, and had proportion and germination rates higher than controls. Probably both mechanical and chemical effects play a role in enhancing germination of seeds. In Brazil where both Schinus and avian frugivores had evolved together, the dependence of Schinus on generalist frugivores had been demonstrated in this study, similar to other countries where the invasive Schinus is dependent on native or introduced avian species for its spreading. This finding has important implications for the restoration of human-altered areas in South America, were Schinus is a native pioneer species, as well as for the management and restoration of areas invaded by Schinus elsewhere.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


Sign in / Sign up

Export Citation Format

Share Document