scholarly journals Cryptic species diversity in polypores: the Skeletocutis nivea species complex

MycoKeys ◽  
2018 ◽  
Vol 36 ◽  
pp. 45-82 ◽  
Author(s):  
Aku Korhonen ◽  
Jaya Seelan Sathiya Seelan ◽  
Otto Miettinen

We propose a taxonomic revision of the two closely related white-rot polypore species,Skeletocutisnivea(Jungh.) Jean Keller andS.ochroalbaNiemelä (Incrustoporiaceae, Basidiomycota), based on phylogenetic analyses of nuclear ribosomal internal transcribed spacer (ITS) and translation elongation factor EF-1α sequences. We show that prevailing morphological species concepts ofS.niveaandS.ochroalbaare non-monophyletic and we delineate new species boundaries based on phylogenetic inference. We recognise eleven species within the prevailing species concept ofS.nivea(S.calidasp. nov.,S.coprosmaecomb. nov.,S.futilissp. nov.,S.imperviasp. nov.,S.ipuletiisp. nov.,S.lepidasp. nov.,S.nemoralissp. nov.,S.niveasensu typi,S.semipileatacomb. nov.,S.unguinasp. nov.andS.yuchengiisp. nov.) and assign new sequenced epitypes forS.niveaandS.semipileata.The traditional concept ofS.ochroalbacomprises two independent lineages embedded within theS.niveaspecies complex. The Eurasian conifer-dwelling speciesS.cummatasp. nov.is recognised as separate from the North AmericanS.ochroalbasensu stricto. Despite comprehensive microscopic examination, the majority of the recognised species are left without stable diagnostic character combinations that would enable species identification based solely on morphology and ecology.

2008 ◽  
Vol 98 (2) ◽  
pp. 159-166 ◽  
Author(s):  
H. Suga ◽  
G. W. Karugia ◽  
T. Ward ◽  
L. R. Gale ◽  
K. Tomimura ◽  
...  

Members of the Fusarium graminearum species complex are important cereal pathogens worldwide and belong to one of at least nine phylogenetically distinct species. We examined 298 strains of the F. graminearum species complex collected from wheat or barley in Japan to determine the species and trichothecene chemotype. Phylogenetic analyses and species-diagnostic polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLPs) revealed the presence and differential distribution of F. graminearum sensu stricto (s. str.) and F. asiaticum in Japan. F. graminearum s. str. is predominant in the north, especially in the Hokkaido area, while F. asiaticum is predominant in southern regions. In the Tohoku area, these species co-occurred. Trichothecene chemotyping of all strains by multiplex PCR revealed significantly different chemotype compositions of these species. All 50 strains of F. graminearum s. str. were of a 15- or 3-acetyl deoxynivalenol type, while 173 (70%) out of 246 strains of F. asiaticum were of a nivalenol type. The possibility of gene flow between the two species was investigated by use of 15 PCR-RFLP markers developed in this study. However, no obvious hybrids were detected from 98 strains examined, including strains collected from regions where both species co-occur.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuan Yuan ◽  
Jia-Jia Chen ◽  
Kari Korhonen ◽  
Francis Martin ◽  
Yu-Cheng Dai

Heterobasidion species are amongst the most intensively studied polypores because several species are aggressive white rot pathogens of managed coniferous forests mainly in Europe and North America. In the present study, both morphological and multilocus phylogenetic analyses were carried out on Heterobasidion samples from Asia, Oceania, Europe and North America. Three new taxa were found, i.e., H. armandii, H. subinsulare, and H. subparviporum are from Asia and are described as new species. H. ecrustosum is treated as a synonym of H. insulare. So far, six taxa in the H. annosum species complex are recognized. Heterobasidion abietinum, H. annosum, and H. parviporum occur in Europe, H. irregulare, and H. occidentale in North America, and H. subparviporum in East Asia. The North American H. irregulare was introduced to Italy during the Second World War. Species in the H. annosum complex are pathogens of coniferous trees, except H. subparviporum that seems to be a saprotroph. Ten species are found in the H. insulare species complex, all of them are saprotrophs. The pathogenic species are distributed in Europe and North America; the Asian countries should consider the European and North American species as entry plant quarantine fungi. Parallelly, European countries should consider the American H. occidentale and H. irregulare as entry plant quarantine fungi although the latter species is already in Italy, while North America should treat H. abietinum, H. annosum s.s., and H. parviporum as entry plant quarantine fungi. Eight Heterobasidion species found in the Himalayas suggest that the ancestral Heterobasidion species may have occurred in Asia.


Author(s):  
N. Yilmaz ◽  
M. Sandoval-Denis ◽  
L. Lombard ◽  
C.M. Visagie ◽  
B.D. Wingfield ◽  
...  

The Fusarium fujikuroi species complex (FFSC) includes more than 60 phylogenetic species (phylospecies) with both phytopathological and clinical importance. Because of their economical relevance, a stable taxonomy and nomenclature is crucial for species in the FFSC. To attain this goal, we examined type specimens and representative cultures of several species by employing morphology and phylogenetic analyses based on partial gene fragments of the translation elongation factor 1-alpha (tef1), beta-tubulin (tub2), calmodulin (cmdA), RNA polymerase largest subunit (rpb1) and RNA polymerase II second largest subunit (rpb2). Based on these results three new species were delimited in the FFSC. Two of these phylospecies clustered within the African clade, and one in the American clade. Epitypes were also designated for six previously described FFSC species including F. proliferatum and F. verticillioides, and a neotype designated for F. subglutinans. Furthermore, both F. acutatum and F. ophioides, which were previously invalidly published, are validated.


Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2123-2136 ◽  
Author(s):  
K. W. T. Chethana ◽  
Y. Zhou ◽  
W. Zhang ◽  
M. Liu ◽  
Q. K. Xing ◽  
...  

Grape white rot is a common disease and causes considerable yield losses in many grape-growing regions when environmental conditions are favorable. We surveyed grape white rot in five provinces in China and collected 27 isolates from diseased grape tissues. Multigene phylogenetic analyses of the internal transcribed spacer region (ITS1-5.8S-ITS2), the 28S large subunit of nuclear ribosomal RNA (LSU), partial translation elongation factor 1-alpha gene (TEF 1-α), and partial histone 3 gene (HIS), coupled with genealogical concordance phylogenetic species recognition and morphological observations, revealed that Coniella vitis sp. nov. and C. diplodiella are the causal agents of grape white rot in China. Koch’s postulates were performed on Vitis vinifera cv. Summer Black in a greenhouse. These results confirmed the pathogenicity on grapes, as symptoms were reproduced, and also indicated significant variations in the virulence among C. vitis isolates. This work provides evidence that C. vitis is the main pathogen of grape white rot in China and also provides an optimized multigene backbone for resolving Coniella species.


Zootaxa ◽  
2017 ◽  
Vol 4300 (3) ◽  
pp. 355 ◽  
Author(s):  
SABINE MELZER ◽  
TRENT BELL ◽  
GEOFF B. PATTERSON

The diverse skink fauna of New Zealand comprises 40 described species within the single genus Oligosoma Girard, 1857. Cryptic species are common among New Zealand skinks, leaving numerous species undescribed. We used molecular phylogeny together with morphological analyses to distinguish four species in the spotted skink, Oligosoma lineoocellatum (Duméril & Duméril 1851), species complex. These are O. lineoocellatum sensu stricto, which is confined to the centre of the South Island, O. prasinum sp. nov. from the Lake Tekapo region, O. elium sp. nov. from the northern half of the South Island, and O. kokowai sp. nov. from the northern South Island, Cook Strait, and the North Island. Despite significant genetic differences, the morphological similarity of these species made it challenging to resolve their taxonomic identity. Three of the four species previously recognised as a single, widespread taxon are now recognised as threatened with extinction by a combination of invasive predatory mammals and land use change. 


MycoKeys ◽  
2018 ◽  
Vol 34 ◽  
pp. 93-108 ◽  
Author(s):  
Jia-Hui Xing ◽  
Yi-Fei Sun ◽  
Yu-Li Han ◽  
Bao-Kai Cui ◽  
Yu-Cheng Dai

Ganoderma is a cosmopolitan white rot fungal genus, famous for its medicinal properties. In the present study, two new Ganoderma species were collected from south-eastern China and described on the basis of morphological characters and phylogenetic analyses of sequences of the internal transcribed spacer (ITS) region, the translation elongation factor 1-α gene (EF1-α) and the second subunit of RNA polymerase II (RPB2). Specimens of both species were found on living trees of Casuarinaequisetifolia. Ganodermaangustisporum sp. nov. is characterised by its sessile basidiomata and almond-shaped, slightly truncate, narrow basidiospores (9–11.3 × 4–5.2 µm). Ganodermacasuarinicola sp. nov. is characterised by its strongly laccate reddish-brown pileal surface, luminous yellow to yellowish-brown cutis and ellipsoid, truncate basidiospores (9–10.2 × 5–6 µm). The two new species are compared with their related taxa. Phylogenetic analyses confirmed that G.angustisporum and G.casuarinicola are distinct species within Ganoderma.


MycoKeys ◽  
2020 ◽  
Vol 66 ◽  
pp. 55-81 ◽  
Author(s):  
Yong Nie ◽  
De-Shui Yu ◽  
Cheng-Fang Wang ◽  
Xiao-Yong Liu ◽  
Bo Huang

The genus Conidiobolus is an important group in entomophthoroid fungi and is considered to be polyphyletic in recent molecular phylogenies. To re-evaluate and delimit this genus, multi-locus phylogenetic analyses were performed using the large and small subunits of nuclear ribosomal DNA (nucLSU and nucSSU), the small subunit of the mitochondrial ribosomal DNA (mtSSU) and the translation elongation factor 1-alpha (EF-1α). The results indicated that the Conidiobolus is not monophyletic, being grouped into a paraphyletic grade with four clades. Consequently, the well-known Conidiobolus is revised and three new genera Capillidium, Microconidiobolus and Neoconidiobolus are proposed along with one new record and 22 new combinations. In addition, the genus Basidiobolus is found to be basal to the other entomophthoroid taxa and the genus Batkoa locates in the Entomophthoraceae clade.


2012 ◽  
Vol 25 (6) ◽  
pp. 418 ◽  
Author(s):  
Roy E. Halling ◽  
Mitchell Nuhn ◽  
Todd Osmundson ◽  
Nigel Fechner ◽  
James M. Trappe ◽  
...  

Harrya is described as a new genus of Boletaceae to accommodate Boletus chromapes, a pink-capped bolete with a finely scabrous stipe adorned with pink scabers, a chrome yellow base and a reddish-brown spore deposit. Phylogenetic analyses of large-subunit rDNA and translation elongation factor 1α confirmed Harrya as a unique generic lineage with two species, one of which is newly described (H. atriceps). Some Chinese taxa were recently placed in a separate genus, Zangia, supported by both morphology and molecular data. Multiple accessions from Queensland, Australia, support the synonymy of at least three species in a separate Australian clade in the new genus, Australopilus. The truffle-like Royoungia is also supported as a separate lineage in this clade of boletes. Even though it lacks stipe characters, it possesses the deep, bright yellow to orange pigments in the peridium. Additional collections from Zambia and Thailand represent independent lineages of uncertain phylogenetic placement in the Chromapes complex, but sampling is insufficient for formal description of new species. Specimens from Java referable to Tylopilus pernanus appear to be a sister group of the Harrya lineage.


1998 ◽  
Vol 76 (9) ◽  
pp. 1570-1583 ◽  
Author(s):  
W Gams ◽  
K O'Donnell ◽  
H -J Schroers ◽  
M Christensen

Unlike most phialide-producing fungi that liberate a multiplicity of conidia from each conidiogenous cell, only single conidia are formed on phialide-like conidiogenous cells in Aphanocladium, Verticimonosporium, and some species of Sibirina. A group of isolates obtained from soil of native Artemisia tridentata (sagebrush) grassland in Wyoming and from desert soil in Iraq is compared with these genera and classified as a fourth genus, Stanjemonium, honouring Stanley J. Hughes. Phylogenetic analyses of partial nuclear small- (18S) and large-subunit (28S) rDNA sequences indicate that Stanjemonium spp. form a monophyletic group with Emericellopsis. Sequences from the nuclear 18S and 28S rDNA were too conserved to resolve morphological species of Stanjemonium; however, phylogenetic analysis of b-tubulin and translation elongation factor 1a gene exons and introns resolved all species distinguished morphologically. Numerous conidiogenous cells or denticles are scattered along the cells of aerial hyphae in Aphanocladium and Stanjemonium spp., very rapidly collapsing into denticles in the former, somewhat more persistent and leaving broad scars in the latter. In Cladobotryum-Sibirina and Verticimonosporium spp., conidiogenous cells are discrete in terminal and intercalary whorls; phialides of the latter taxon are particularly swollen. The taxonomy of Aphanocladium is not yet resolved. Two species are recognized in Verticimonosporium. Three new species of Stanjemonium are described, and one new combination from Aphanocladium is proposed, along with one new species of Cladobotryum.Key words: Aphanocladium, Cladobotryum, conidiogenesis, hyphomycetes, molecular phylogeny, phialide, Stanjemonium, systematics, Verticimonosporium.


Sign in / Sign up

Export Citation Format

Share Document