scholarly journals Molecular phylogenetic data and seed coat anatomy resolve the generic position of some critical Chenopodioideae (Chenopodiaceae – Amaranthaceae) with reduced perianth segments

PhytoKeys ◽  
2018 ◽  
Vol 109 ◽  
pp. 103-128 ◽  
Author(s):  
Alexander P. Sukhorukov ◽  
Maya V. Nilova ◽  
Anastasiya A. Krinitsina ◽  
Maxim A. Zaika ◽  
Andrey S. Erst ◽  
...  

The former Chenopodiumsubgen.Blitum and the genus Monolepis (Chenopodioideae) are characterised in part by a reduced (0–4) number of perianth segments. According to recent molecular phylogenetic studies, these groups belong to the reinstated genera Blitum incl. Monolepis (tribe Anserineae) and Oxybasis (tribe Chenopodieae). However, key taxa such as C.antarcticum, C.exsuccum, C.litwinowii, C.foliosumsubsp.montanum and Monolepisspathulata were not included and so their phylogenetic position within the Chenopodioideae remained equivocal. These species and additional samples of Blitumasiaticum and B.nuttallianum were incorporated into an expanded phylogenetic study based on nrDNA (ITS region) and cpDNA (trnL-trnF and atpB-rbcL intergenic spacers and rbcL gene). Our analyses confirm the placement of C.exsuccum, C.litwinowii and C.foliosumsubsp.montanum within Blitum (currently recognised as Blitumpetiolare, B.litwinowii and B.virgatumsubsp.montanum, respectively); additionally, C.antarcticum, currently known as Oxybasisantarctica, is also placed within Blitum (reinstated here as B.antarcticum). Congruent with previous studies, two of the three accepted species of Monolepis – the type species M.trifida (= M.nuttalliana) as well as M.asiatica – are included in Blitum. The monotypic genus Carocarpidium described recently with the type C.californicum is not accepted as it is placed within Blitum (reinstated here as B.californicum). To date, few reliable morphological characters have been proposed that consistently distinguish Blitum (incl. two Monolepis species) from morphologically similar Oxybasis; however, two key differences are evident: (1) the presence of long-petiolate rosulate leaves in Blitum vs. their absence in Oxybasis and (2) a seed coat structure with the outer wall of the testa cells lacking stalactites (‘non-stalactite seed coat’) but with an obvious protoplast in Blitum vs. seed coat with the outer walls of the testa cells having stalactites (‘stalactite seed coat’) and a reduced protoplast in Oxybasis. Surprisingly, the newly sequenced North American Monolepisspathulata nested within the tribe Dysphanieae (based on ITS and trnL-trnF + rbcL + atpB-rbcL analyses).The phylogenetic results, as well as presence of the stalactites in the outer cell walls of the testa and lack of the rosulate leaves, confirm the distinctive nature of Monolepisspathulata from all Blitum and, therefore, the recent combination Blitumspathulatum cannot be accepted. Indeed, the morphological and molecular distinctive nature of this species from all Dysphanieae supports its recognition as a new monotypic genus, named herein as Neomonolepis (type species: N.spathulata). The basionym name Monolepisspathulata is also lectotypified on a specimen currently lodged at GH. Finally, while Micromonolepispusilla is confirmed as belonging to the tribe Chenopodieae, its position is not fully resolved. As this monotypic genus is morphologically divergent from Chenopodium, it is retained as distinct but it is acknowledged that further work is required to confirm its status.

Phytotaxa ◽  
2015 ◽  
Vol 206 (1) ◽  
pp. 14 ◽  
Author(s):  
Roberto Manuel Salas ◽  
PEDRO L. VIANA ◽  
ELSA L. CABRAL ◽  
STEVEN DESSEIN ◽  
STEVEN JANSSENS

Carajasia is described as a new genus of Rubiaceae. It is so far known only from the mountain summits of Serra dos Carajás (Pará, Brazil), where it is part of a shrubby vegetation surrounded by tropical rainforest. The new genus belongs to the tribe Spermacoceae and is positioned within it to the Spermacoce clade. Carajasia is unique within the clade in having a very particular combination of characters: flowering branches with two axillary flowers per node, homostylous flowers, corollas with a fringe of moniliform hairs, pubescent styles with distinct stigma lobes, bilobed nectariferous discs covered by triangular papillae, pollen with a double reticulum and fruits with a peculiar type of dehiscence. A detailed description of Carajasia is presented, including observations of the fruit and pollen, along with distribution maps and images of the plant in its habitat. A dichotomous key to distinguish Carajasia from other genera with deeply divided stigmas is provided. A molecular phylogenetic study was carried out using ITS and ETS sequences to determine the phylogenetic position of the new genus within the Spermacoce clade. The results of the combined analyses demonstrated that Carajasia is sister to Galianthe with moderate to high support. Both genera form a weakly supported clade with Schwendenera. This clade is sister to the other genera of the Spermacoce clade studied in this work. Galianthe and Schwendenera share with Carajasia pollen with a double reticulum, but they are clearly differentiated by suffruticose habit, heterostylous flowers and the pattern of fruit dehiscence. To clarify the phylogenetic position of Carajasia, some morphological characters are discussed based on the molecular results: division of the stigma, pollen types and floral syndrome.


2019 ◽  
Vol 85 (3) ◽  
pp. 336-347
Author(s):  
Bastian T Reijnen ◽  
Sancia E T van der Meij

Abstract Molecular phylogenetic research on the octocoral-associated gastropod family Ovulidae is still in its infancy and, as a consequence, the relationships between subfamilies and genera are not well defined. Previous research on various ovulid genera has shown that their conchological characters are often too fluid when dealing with species delimitations. For this study, Ovulidae were collected in Indonesia and Malaysia, with some additional specimens obtained from Thailand and the Red Sea. Relationships between the Aclyvolvinae and other ovulid subfamilies were assessed using sequence data from two mitochondrial genes (cytochrome c oxidase subunit I (COI) and 16S rRNA); the dataset contained ovulid species (including type species) from the subfamilies Eocypraeinae, Ovulinae, Pediculariinae and Simniinae. The type species of the subfamilies Eocypraeinae and Sulcocypraeinae are fossils, and hence could not be included in the analyses. The phylogeny and systematics of the subfamily Aclyvolvinae were assessed based on four DNA gene regions (mitochondrial COI and 16S rRNA, and nuclear 28S rRNA and histone H3) and morphometric analyses. Shell morphological characters were analysed to help clarify species delimitations within the Aclyvolvinae. The results from the molecular analyses showed that the subfamilies Aclyvolvinae, Eocypraeinae and Simniinae are polyphyletic, whereas the Ovulinae and Pediculariinae appear to be monophyletic. Within the subfamily Aclyvolvinae, the type species of Hiatavolva, H. depressa, did not form a clade with the other species of Hiatavolva. Instead, H. rugosa and H. coarctata formed a clade that is sister to the clade comprising Aclyvolva lamyi, A. lanceolata and A. nicolamassierae, and are therefore now considered as belonging to the genus Aclyvolva. Aclyvolva lamyi and A. nicolamassierae were shown to be synonyms of A. lanceolata, and A. rugosa (n. comb.) is a synonym of A. coarctata (n. comb.). The genus Kuroshiovolva could not be retrieved in a fixed phylogenetic position within the Aclyvolvinae, nor did it cluster with H. depressa or Aclyvolva spp. Our morphometric analyses are in agreement with the results of the molecular analyses, and furthermore show that juvenile shells are morphologically significantly different from their adult conspecifics. Photographs of the type material of Ovulum lanceolatum, O. coarctatum, Neosimnia lamyi, Hiata rugosa and A. nicolamassierae are provided, and new information is given on the geographical distribution and host species of Aclyvolvinae. The subfamily Aclyvolvinae is redefined and now includes only A. lanceolata and A. coarctata. The genus Hiatavolva is now monotypic, containing only H. depressa, but the subfamily to which this genus belongs remains unclear. Kuroshiovolva is not part of the Aclyvolvinae, but its subfamily level placement is unclear.


2020 ◽  
Vol 86 (1) ◽  
pp. 1-26
Author(s):  
S T Williams ◽  
Y Kano ◽  
A Warén ◽  
D G Herbert

ABSTRACT The assignment of species to the vetigastropod genus Solariella Wood, 1842, and therefore the family Solariellidae Powell, 1951, is complicated by the fact that the type species (Solariella maculata Wood, 1842) is a fossil described from the Upper Pliocene. Assignment of species to genera has proved difficult in the past, and the type genus has sometimes acted as a ‘wastebasket’ for species that cannot easily be referred to another genus. In the light of a new systematic framework provided by two recent publications presenting the first molecular phylogenetic data for the group, we reassess the shell characters that are most useful for delimiting genera. Shell characters were previously thought to be of limited taxonomic value above the species level, but this is far from the case. Although overall shell shape is not a reliable character, our work shows that shell characters, along with radular and anatomical characters, are useful for assigning species to genera. Sculpture of the early teleoconch (the region immediately following the protoconch) and the columella are particularly useful characters that have not been used regularly in the past to distinguish genera. However, even with the combination of all morphological characters used in this study (shell, radular and eye), a few species are still difficult to assign to genera and in such cases molecular systematic data are essential. In the present study, we discuss 13 genera—12 of which were recovered as well-supported clades in recent molecular systematic studies—and provide morphological characters to distinguish them. We describe several new taxa: Chonospeira n. gen. (referred to as ‘clade B’ in previous molecular systematic studies), Phragmomphalina n. gen. (Bathymophila in part in molecular systematic studies) and Phragmomphalina vilvensi n. sp. (type species of Phragmomphalina n. gen.). We synonymize Hazuregyra Shikama, 1962 with Minolia A. Adams, 1860, Minolia subangulata Kuroda & Habe, 1952 with Minolia punctata A. Adams, 1860 and M. gemmulata Kuroda & Habe, 1971 with M. shimajiriensis (MacNeil, 1960). We also present the following new combinations: Bathymophila bairdii (Dall, 1889), B. dawsoni (Marshall, 1979), B. regalis (Marshall, 1999), B. wanganellica (Marshall, 1999), B. ziczac (Kuroda & Habe in Kuroda, Habe & Oyama, 1971), Chonospeira nuda (Dall, 1896), C. iridescens (Habe, 1961), C. ostreion (Vilvens, 2009), C. strobilos (Vilvens, 2009), Elaphriella corona (Lee & Wu, 2001), E. diplax (Marshall, 1999), E. meridiana (Marshall, 1999), E. olivaceostrigata (Schepman, 1908), E. opalina (Shikama & Hayashi, 1977), Ilanga norfolkensis (Marshall, 1999), I. ptykte (Vilvens, 2009), I. zaccaloides (Vilvens, 2009), Minolia shimajiriensis (MacNeil, 1960), M. watanabei (Shikama, 1962), Phragmomphalina alabida (Marshall, 1979), P. diadema (Marshall, 1999), P. tenuiseptum (Marshall, 1999), Spectamen euteium (Vilvens, 2009), S. basilicum (Marshall, 1999), S. exiguum (Marshall, 1999) and S. flavidum (Marshall, 1999).


Zootaxa ◽  
2020 ◽  
Vol 4890 (3) ◽  
pp. 417-427
Author(s):  
JAN JEŽEK ◽  
JOZEF OBOŇA ◽  
FRANↅOIS LE PONT ◽  
JEAN-MICHEL MAES ◽  
EDDY MARTINEZ

The former monotypic genus Armillipora Quate, known only from Costa Rica and Panama, is redescribed, including the type species A. selvica Quate, this time collected on the Caribbean side of Nicaragua, RAAN department, and illustrated based on male morphological characters. The male of a new species, A. suapiensis sp. nov., from Bolivia, La Paz department, is described here and also figured.


Phytotaxa ◽  
2017 ◽  
Vol 314 (2) ◽  
pp. 231
Author(s):  
LÉANNE L. DREYER ◽  
FRANCOIS ROETS ◽  
KENNETH C. OBERLANDER

Two new species of Oxalis (Oxalidaceae) from the Richtersveld are described, namely Oxalis canaliculata and O. magnifolia. These widespread species are morphologically distinct and easily identified, but both contain populations in which individuals consistently differ morphologically from typical varieties. The typical variety of Oxalis canaliculata is widespread throughout the Richtersveld, while O. canaliculata var. trifoliolata is known from a single population and O. canaliculata var. graniticola is known only from granite outcrops. Oxalis magnifolia includes the typical variety that is widespread and Oxalis magnifolia var. reduplicata, which is only known from two populations in close proximity to one another. Morphological characters, preliminary phylogenetic position based on data from the nuclear ITS region, habitat description and formal taxonomic descriptions are provided for all taxa. The diagnostic characters of the new species are compared to all phenotypically similar southern African species.


ZooKeys ◽  
2020 ◽  
Vol 1004 ◽  
pp. 27-97
Author(s):  
Wayne P. Maddison ◽  
Imara Beattie ◽  
Kiran Marathe ◽  
Paul Y. C. Ng ◽  
Nilani Kanesharatnam ◽  
...  

The systematics and taxonomy of the tropical Asian jumping spiders of the tribe Baviini is reviewed, with a molecular phylogenetic study (UCE sequence capture, traditional Sanger sequencing) guiding a reclassification of the group’s genera. The well-studied members of the group are placed into six genera: Bavia Simon, 1877, Indopadilla Caleb & Sankaran, 2019, Padillothorax Simon, 1901, Piranthus Thorell, 1895, Stagetillus Simon, 1885, and one new genus, Maripanthus Maddison, gen. nov. The identity of Padillothorax is clarified, and Bavirecta Kanesharatnam & Benjamin, 2018 synonymized with it. Hyctiota Strand, 1911 is synonymized with Stagetillus. The molecular phylogeny divides the baviines into three clades, the Piranthus clade with a long embolus (Piranthus, Maripanthus), the genus Padillothorax with a flat body and short embolus, and the Bavia clade with a higher body and (usually) short embolus (remaining genera). In general, morphological synapomorphies support or extend the molecularly delimited groups. Eighteen new species are described: Bavia nessagyna, Indopadilla bamilin, I. kodagura, I. nesinor, I. redunca, I. redynis, I. sabivia, I. vimedaba, Maripanthus draconis (type species of Maripanthus), M. jubatus, M. reinholdae, Padillothorax badut, P. mulu, Piranthus api, P. bakau, P. kohi, P. mandai, and Stagetillus irri, all sp. nov., with taxonomic authority W. Maddison. The distinctions between baviines and the astioid Nungia Żabka, 1985 are reviewed, leading to four species being moved into Nungia from Bavia and other genera. Fifteen new combinations are established: Bavia maurerae (Freudenschuss & Seiter, 2016), Indopadilla annamita (Simon, 1903), I. kahariana (Prószyński & Deeleman-Reinhold, 2013), I. sonsorol (Berry, Beatty & Prószyński, 1997), I. suhartoi (Prószyński & Deeleman-Reinhold, 2013), Maripanthus menghaiensis (Cao & Li, 2016), M. smedleyi (Reimoser, 1929), Nungia hatamensis (Thorell, 1881), N. modesta (Keyserling, 1883), N. papakula (Strand, 1911), N. xiaolonghaensis (Cao & Li, 2016), Padillothorax casteti (Simon, 1900), P. exilis (Cao & Li, 2016), P. flavopunctus (Kanesharatnam & Benjamin, 2018), Stagetillus banda (Strand, 1911), all comb. nov. One combination is restored, Bavia capistrata (C. L. Koch, 1846). Five of these new or restored combinations correct previous errors of placing species in genera that have superficially similar palps but extremely different body forms, in fact belonging in distantly related tribes, emphasizing that the general shape of male palps should be used with caution in determining relationships. A little-studied genus, Padillothorus Prószyński, 2018, is tentatively assigned to the Baviini. Ligdus Thorell, 1895 is assigned to the Ballini.


2020 ◽  
Vol 28 ◽  
pp. 01003
Author(s):  
Tuty Arisuryanti ◽  
Bella Ulin Nikmah ◽  
Tomi Kasayev ◽  
Lukman Hakim

Selais fish is difficult to discriminate with other Silurid fish species based on morphological characters. As a result, the valid species of selais fish is uncertain. Therefore, a molecular phylogenetic study was needed to clarify species boundaries and to addresses genetic relationships of the selais fish. In this study, 16S mitochondrial gene of ten selais samples collected from Arut River (Central Kalimantan) were sequenced, from which a Bayesian trees was generated. Result revealed monophyletic of selais fish which is revealed as a single species. The Bayesian inference showed that the selais fish clade is distinguished with two other genus, Kryptopterus and Ompok, by its sequence differences. This finding can address species boundaries of selais fish using Bayesian approach, but the name of the selais species has not been clarified.


Zootaxa ◽  
2012 ◽  
Vol 3570 (1) ◽  
pp. 82 ◽  
Author(s):  
M. GUADALUPE DEL RÍO ◽  
ANALIA A. LANTERI

The monotypic genus Curiades Pascoe 1880 (Curculionidae: Entiminae: Naupactini) is redescribed based on the type species C. boisduvali (Boheman 1840), endemic to Río de Janeiro, Brazil. Curiades boisduvali shows a characteristic color pattern and vestiture composed of long erect setae that resembles species of Dasymutilla Ashmead 1899, a genus of Mutillidae (Hymenoptera) whose wingless females have aposematic colors and painful stings. The similarities between the wasp (model) and the weevil (mimic) suggest a case of Batesian mimicry. The morphological characters of the rostrum and antennae justify a close phylogenetic relationship of Curiades and Platyomus Sahlberg 1823, even though based on its hairy vestiture the former is superficially more similar to Trichaptus Pascoe 1880, another Brazilian naupactine mimic of mutillid wasps. The present contribution includes a redescription of Curiades and its only known species, accompanied by habitus photographs, line drawings of genitalia and other diagnostic features.


2019 ◽  
Vol 187 (4) ◽  
pp. 1259-1277 ◽  
Author(s):  
Robin Kundrata ◽  
Stephan M Blank ◽  
Alexander S Prosvirov ◽  
Eliska Sormova ◽  
Matthew L Gimmel ◽  
...  

Abstract Cydistinae are a rare monogeneric beetle lineage from Asia with a convoluted history of classification, historically placed in various groups within the series Elateriformia. However, their position has never been rigorously tested. To resolve this long-standing puzzle, we are the first to present sequences of two nuclear and two mitochondrial markers for four species of Cydistinae to determine their phylogenetic position. We included these sequences in two rounds of analyses: one including a broad Elateriformia dataset to test placement at the superfamily/family level, and a second, including a richer, targeted sampling of presumed close relatives. Our results strongly support Cydistinae as sister to Phengodidae in a clade with Rhagophthalmidae. Based on our molecular phylogenetic results and examination of morphological characters, we hereby transfer the formerly unplaced Cydistinae into Phengodidae and provide diagnoses for the newly circumscribed Phengodidae, Cydistinae and Cydistus. Since both Phengodidae and Rhagophthalmidae have bioluminescent larvae and strongly neotenic females, similar features can be hypothesized for Cydistinae. Additionally, Cydistus minor is transferred to the new genus Microcydistus.


Zootaxa ◽  
2019 ◽  
Vol 4571 (1) ◽  
pp. 99
Author(s):  
HONGXIANG HAN ◽  
PEDER SKOU ◽  
RUI CHENG

Neochloroglyphica gen. nov. and its type species N. perbella sp. nov. are described from Yunnan, China. Morphological characters and molecular phylogenetic analysis, based on one mitochondrial and three nuclear genes, support the hypothesis that Neochloroglyphica is a member of the tribe Neohipparchini, and that it is a sister genus to Chloroglyphica. Morphological characters, including those of the genitalia, are figured and compared with related genera, especially Chloroglyphica, Neohipparchus and Chlororithra. Diagnoses for the genus and the species are provided and illustrations of external features and genitalia are presented. 


Sign in / Sign up

Export Citation Format

Share Document